Suppr超能文献

人类蛋白质错义变体的预测机制影响。

Predicted mechanistic impacts of human protein missense variants.

作者信息

Jänes Jürgen, Müller Marc, Selvaraj Senthil, Manoel Diogo, Stephenson James, Gonçalves Catarina, Lafita Aleix, Polacco Benjamin, Obernier Kirsten, Alasoo Kaur, Lemos Manuel C, Krogan Nevan, Martin Maria, Saraiva Luis R, Burke David, Beltrao Pedro

机构信息

Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.

Swiss Institute of Bioinformatics, Lausanne, Switzerland.

出版信息

bioRxiv. 2024 May 29:2024.05.29.596373. doi: 10.1101/2024.05.29.596373.

Abstract

Genome sequencing efforts have led to the discovery of tens of millions of protein missense variants found in the human population with the majority of these having no annotated role and some likely contributing to trait variation and disease. Sequence-based artificial intelligence approaches have become highly accurate at predicting variants that are detrimental to the function of proteins but they do not inform on mechanisms of disruption. Here we combined sequence and structure-based methods to perform proteome-wide prediction of deleterious variants with information on their impact on protein stability, protein-protein interactions and small-molecule binding pockets. AlphaFold2 structures were used to predict approximately 100,000 small-molecule binding pockets and stability changes for over 200 million variants. To inform on protein-protein interfaces we used AlphaFold2 to predict structures for nearly 500,000 protein complexes. We illustrate the value of mechanism-aware variant effect predictions to study the relation between protein stability and abundance and the structural properties of interfaces underlying protein quantitative trait loci (pQTLs). We characterised the distribution of mechanistic impacts of protein variants found in patients and experimentally studied example disease linked variants in FGFR1.

摘要

基因组测序工作已促使人们在人类群体中发现了数千万个蛋白质错义变体,其中大多数没有注释作用,有些可能导致性状变异和疾病。基于序列的人工智能方法在预测对蛋白质功能有害的变体方面已变得高度准确,但它们无法提供破坏机制的信息。在此,我们结合基于序列和结构的方法,对有害变体进行全蛋白质组预测,并提供有关它们对蛋白质稳定性、蛋白质-蛋白质相互作用和小分子结合口袋影响的信息。使用AlphaFold2结构预测了约10万个小分子结合口袋以及超过2亿个变体的稳定性变化。为了了解蛋白质-蛋白质界面,我们使用AlphaFold2预测了近50万个蛋白质复合物的结构。我们阐述了机制感知变体效应预测在研究蛋白质稳定性与丰度之间的关系以及蛋白质数量性状位点(pQTL)潜在界面的结构特性方面的价值。我们对患者中发现的蛋白质变体的机制影响分布进行了表征,并通过实验研究了FGFR1中与疾病相关的示例变体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9f2/11160786/c236e51e7a67/nihpp-2024.05.29.596373v1-f0001.jpg

相似文献

1
Predicted mechanistic impacts of human protein missense variants.
bioRxiv. 2024 May 29:2024.05.29.596373. doi: 10.1101/2024.05.29.596373.
2
Integrating Large-Scale Protein Structure Prediction into Human Genetics Research.
Annu Rev Genomics Hum Genet. 2024 Aug;25(1):123-140. doi: 10.1146/annurev-genom-120622-020615. Epub 2024 Aug 6.
3
Using AI-predicted protein structures as a reference to predict loss-of-function activity in tumor suppressor breast cancer genes.
Comput Struct Biotechnol J. 2024 Oct 5;23:3472-3480. doi: 10.1016/j.csbj.2024.10.008. eCollection 2024 Dec.
4
Artificial intelligence-based recognition for variant pathogenicity of BRCA1 using AlphaFold2-predicted structures.
Theranostics. 2023 Jan 1;13(1):391-402. doi: 10.7150/thno.79362. eCollection 2023.
5
Predicting the pathogenicity of missense variants using features derived from AlphaFold2.
Bioinformatics. 2023 May 4;39(5). doi: 10.1093/bioinformatics/btad280.
8
SIGMA leverages protein structural information to predict the pathogenicity of missense variants.
Cell Rep Methods. 2024 Jan 22;4(1):100687. doi: 10.1016/j.crmeth.2023.100687. Epub 2024 Jan 10.
10
Genetic variant classification by predicted protein structure: A case study on IRF6.
Comput Struct Biotechnol J. 2024 Feb 3;23:892-904. doi: 10.1016/j.csbj.2024.01.019. eCollection 2024 Dec.

本文引用的文献

1
Extensive co-regulation of neighboring genes complicates the use of eQTLs in target gene prioritization.
HGG Adv. 2024 Oct 10;5(4):100348. doi: 10.1016/j.xhgg.2024.100348. Epub 2024 Aug 29.
2
ProtVar: mapping and contextualizing human missense variation.
Nucleic Acids Res. 2024 Jul 5;52(W1):W140-W147. doi: 10.1093/nar/gkae413.
3
An atlas of protein homo-oligomerization across domains of life.
Cell. 2024 Feb 15;187(4):999-1010.e15. doi: 10.1016/j.cell.2024.01.022. Epub 2024 Feb 6.
4
A genomic mutational constraint map using variation in 76,156 human genomes.
Nature. 2024 Jan;625(7993):92-100. doi: 10.1038/s41586-023-06045-0. Epub 2023 Dec 6.
5
Accurate proteome-wide missense variant effect prediction with AlphaMissense.
Science. 2023 Sep 22;381(6664):eadg7492. doi: 10.1126/science.adg7492.
6
Genome-wide prediction of disease variant effects with a deep protein language model.
Nat Genet. 2023 Sep;55(9):1512-1522. doi: 10.1038/s41588-023-01465-0. Epub 2023 Aug 10.
7
Mega-scale experimental analysis of protein folding stability in biology and design.
Nature. 2023 Aug;620(7973):434-444. doi: 10.1038/s41586-023-06328-6. Epub 2023 Jul 19.
8
Updated benchmarking of variant effect predictors using deep mutational scanning.
Mol Syst Biol. 2023 Aug 8;19(8):e11474. doi: 10.15252/msb.202211474. Epub 2023 Jun 13.
10
Rapid protein stability prediction using deep learning representations.
Elife. 2023 May 15;12:e82593. doi: 10.7554/eLife.82593.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验