Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia.
Sci Rep. 2024 Jun 20;14(1):14208. doi: 10.1038/s41598-024-61541-1.
The COVID-19 disease is an ongoing global health concern. Although vaccination provides some protection, people are still susceptible to re-infection. Ostensibly, certain populations or clinical groups may be more vulnerable. Factors causing these differences are unclear and whilst socioeconomic and cultural differences are likely to be important, human genetic factors could influence susceptibility. Experimental studies indicate SARS-CoV-2 uses innate immune suppression as a strategy to speed-up entry and replication into the host cell. Therefore, it is necessary to understand the impact of variants in immunity-associated human proteins on susceptibility to COVID-19. In this work, we analysed missense coding variants in several SARS-CoV-2 proteins and their human protein interactors that could enhance binding affinity to SARS-CoV-2. We curated a dataset of 19 SARS-CoV-2: human protein 3D-complexes, from the experimentally determined structures in the Protein Data Bank and models built using AlphaFold2-multimer, and analysed the impact of missense variants occurring in the protein-protein interface region. We analysed 468 missense variants from human proteins and 212 variants from SARS-CoV-2 proteins and computationally predicted their impacts on binding affinities for the human viral protein complexes. We predicted a total of 26 affinity-enhancing variants from 13 human proteins implicated in increased binding affinity to SARS-CoV-2. These include key-immunity associated genes (TOMM70, ISG15, IFIH1, IFIT2, RPS3, PALS1, NUP98, AXL, ARF6, TRIMM, TRIM25) as well as important spike receptors (KREMEN1, AXL and ACE2). We report both common (e.g., Y13N in IFIH1) and rare variants in these proteins and discuss their likely structural and functional impact, using information on known and predicted functional sites. Potential mechanisms associated with immune suppression implicated by these variants are discussed. Occurrence of certain predicted affinity-enhancing variants should be monitored as they could lead to increased susceptibility and reduced immune response to SARS-CoV-2 infection in individuals/populations carrying them. Our analyses aid in understanding the potential impact of genetic variation in immunity-associated proteins on COVID-19 susceptibility and help guide drug-repurposing strategies.
新型冠状病毒病是当前全球关注的一项卫生健康问题。虽然疫苗接种提供了一定程度的保护,但人们仍然容易再次感染。显然,某些人群或临床群体可能更容易受到影响。导致这些差异的因素尚不清楚,虽然社会经济和文化差异可能很重要,但人类遗传因素可能会影响易感性。实验研究表明,严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)利用先天免疫抑制作为一种策略来加速进入和复制到宿主细胞。因此,有必要了解免疫相关人类蛋白中的变异对新型冠状病毒病易感性的影响。在这项工作中,我们分析了几种 SARS-CoV-2 蛋白及其人类蛋白相互作用蛋白中的错义编码变异,这些变异可能增强与 SARS-CoV-2 的结合亲和力。我们从蛋白质数据库中实验确定的结构和使用 AlphaFold2-multimer 构建的模型中整理了一组 19 个 SARS-CoV-2:人类蛋白 3D 复合物数据集,并分析了发生在蛋白-蛋白相互作用区域的错义变异的影响。我们分析了来自人类蛋白的 468 个错义变异和来自 SARS-CoV-2 蛋白的 212 个变异,并计算预测了它们对人类病毒蛋白复合物结合亲和力的影响。我们从 13 个与增加 SARS-CoV-2 结合亲和力有关的关键免疫相关基因(TOMM70、ISG15、IFIH1、IFIT2、RPS3、PALS1、NUP98、AXL、ARF6、TRIMM、TRIM25)以及重要的刺突受体(KREMEN1、AXL 和 ACE2)中预测了总共 26 个增强亲和力的变异。我们报告了这些蛋白中的常见(如 IFIH1 中的 Y13N)和罕见变异,并讨论了它们可能的结构和功能影响,同时利用了已知和预测的功能位点信息。讨论了这些变异所涉及的与免疫抑制相关的潜在机制。应监测某些预测的增强亲和力的变异的发生,因为它们可能导致携带这些变异的个体/人群对 SARS-CoV-2 感染的易感性增加和免疫反应降低。我们的分析有助于了解免疫相关蛋白中的遗传变异对新型冠状病毒病易感性的潜在影响,并有助于指导药物再利用策略。