Suppr超能文献

预测病理I-II期非小细胞肺癌术后骨转移的预测模型的开发。

Development of a predictive model to predict postoperative bone metastasis in pathological I-II non-small cell lung cancer.

作者信息

Zhou Jian, Wu Dongsheng, Zheng Quan, Wang Tengyong, Mei Jiandong

机构信息

Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Transl Lung Cancer Res. 2024 May 31;13(5):998-1009. doi: 10.21037/tlcr-23-866. Epub 2024 May 20.

Abstract

BACKGROUND

Bone is a common metastatic site in postoperative metastasis, but related risk factors for early-stage non-small cell lung cancer (NSCLC) remain insufficiently investigated. Thus, the study aimed to identify risk factors for postoperative bone metastasis in early-stage NSCLC and construct a nomogram to identify high-risk individuals.

METHODS

Between January 2015 and January 2021, we included patients with resected stage I-II NSCLC at the Department of Thoracic Surgery, West China Hospital. Univariable and multivariable Cox regression analyses were used to identify related risk factors. Additionally, we developed a visual nomogram to forecast the likelihood of bone metastasis. Evaluation of the model involved metrics such as the area under the curve (AUC), C-index, and calibration curves. To ensure reliability, internal validation was performed through bootstrap resampling.

RESULTS

Our analyses included 2,106 eligible patients, with 54 (2.56%) developing bone metastasis. Multivariable Cox analyses showed that tumor nodules with solid component, higher pT stage, higher pN stage, and histologic subtypes especially solid/micropapillary predominant types were considered as independent risk factors of bone metastasis. In the training set, the developed model demonstrated AUCs of 0.807, 0.769, and 0.761 for 1-, 3-, and 5-year follow-ups, respectively. The C-index, derived from 1,000 bootstrap resampling, showed values of 0.820, 0.793, and 0.777 for 1-, 3-, and 5-year follow-ups. The calibration curve showed that the model was well calibrated.

CONCLUSIONS

The predictive model is proven to be valuable in estimating the probability of bone metastasis in early-stage NSCLC following surgery. Leveraging four easy-to-acquire clinical parameters, this model effectively identifies high-risk patients and enables individualized surveillance strategies for better patient care.

摘要

背景

骨是术后转移的常见部位,但早期非小细胞肺癌(NSCLC)的相关危险因素仍未得到充分研究。因此,本研究旨在确定早期NSCLC术后骨转移的危险因素,并构建列线图以识别高危个体。

方法

2015年1月至2021年1月期间,我们纳入了华西医院胸外科接受I-II期NSCLC手术切除的患者。采用单因素和多因素Cox回归分析来确定相关危险因素。此外,我们开发了一种可视化列线图来预测骨转移的可能性。模型评估涉及曲线下面积(AUC)、C指数和校准曲线等指标。为确保可靠性,通过自助重采样进行内部验证。

结果

我们的分析纳入了2106例符合条件的患者,其中54例(2.56%)发生了骨转移。多因素Cox分析显示,具有实性成分的肿瘤结节、较高的pT分期、较高的pN分期以及组织学亚型尤其是以实性/微乳头为主的类型被认为是骨转移的独立危险因素。在训练集中,所开发的模型在1年、3年和5年随访时的AUC分别为0.807、0.769和0.761。通过1000次自助重采样得出的C指数在1年、3年和5年随访时分别为0.820、0.793和0.777。校准曲线显示该模型校准良好。

结论

该预测模型被证明在估计早期NSCLC术后骨转移概率方面具有价值。利用四个易于获取的临床参数,该模型有效地识别高危患者,并能够制定个体化监测策略以实现更好的患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5737/11157370/b86e43859048/tlcr-13-05-998-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验