Zhou Jian, Wu Dongsheng, Zheng Quan, Wang Tengyong, Mei Jiandong
Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.
Transl Lung Cancer Res. 2024 May 31;13(5):998-1009. doi: 10.21037/tlcr-23-866. Epub 2024 May 20.
Bone is a common metastatic site in postoperative metastasis, but related risk factors for early-stage non-small cell lung cancer (NSCLC) remain insufficiently investigated. Thus, the study aimed to identify risk factors for postoperative bone metastasis in early-stage NSCLC and construct a nomogram to identify high-risk individuals.
Between January 2015 and January 2021, we included patients with resected stage I-II NSCLC at the Department of Thoracic Surgery, West China Hospital. Univariable and multivariable Cox regression analyses were used to identify related risk factors. Additionally, we developed a visual nomogram to forecast the likelihood of bone metastasis. Evaluation of the model involved metrics such as the area under the curve (AUC), C-index, and calibration curves. To ensure reliability, internal validation was performed through bootstrap resampling.
Our analyses included 2,106 eligible patients, with 54 (2.56%) developing bone metastasis. Multivariable Cox analyses showed that tumor nodules with solid component, higher pT stage, higher pN stage, and histologic subtypes especially solid/micropapillary predominant types were considered as independent risk factors of bone metastasis. In the training set, the developed model demonstrated AUCs of 0.807, 0.769, and 0.761 for 1-, 3-, and 5-year follow-ups, respectively. The C-index, derived from 1,000 bootstrap resampling, showed values of 0.820, 0.793, and 0.777 for 1-, 3-, and 5-year follow-ups. The calibration curve showed that the model was well calibrated.
The predictive model is proven to be valuable in estimating the probability of bone metastasis in early-stage NSCLC following surgery. Leveraging four easy-to-acquire clinical parameters, this model effectively identifies high-risk patients and enables individualized surveillance strategies for better patient care.
骨是术后转移的常见部位,但早期非小细胞肺癌(NSCLC)的相关危险因素仍未得到充分研究。因此,本研究旨在确定早期NSCLC术后骨转移的危险因素,并构建列线图以识别高危个体。
2015年1月至2021年1月期间,我们纳入了华西医院胸外科接受I-II期NSCLC手术切除的患者。采用单因素和多因素Cox回归分析来确定相关危险因素。此外,我们开发了一种可视化列线图来预测骨转移的可能性。模型评估涉及曲线下面积(AUC)、C指数和校准曲线等指标。为确保可靠性,通过自助重采样进行内部验证。
我们的分析纳入了2106例符合条件的患者,其中54例(2.56%)发生了骨转移。多因素Cox分析显示,具有实性成分的肿瘤结节、较高的pT分期、较高的pN分期以及组织学亚型尤其是以实性/微乳头为主的类型被认为是骨转移的独立危险因素。在训练集中,所开发的模型在1年、3年和5年随访时的AUC分别为0.807、0.769和0.761。通过1000次自助重采样得出的C指数在1年、3年和5年随访时分别为0.820、0.793和0.777。校准曲线显示该模型校准良好。
该预测模型被证明在估计早期NSCLC术后骨转移概率方面具有价值。利用四个易于获取的临床参数,该模型有效地识别高危患者,并能够制定个体化监测策略以实现更好的患者护理。