Yu Xuteng, Liu Chang, Li Chi, Wang Can, Li Yuheng, Liang Lusheng, Yu Wei, Wang Yao, Liu Chunming, Liu Yanrui, Yang Gaoyuan, Fu Wanqiang, Zhou Qin, Lien Shui-Yang, Wang Yunyu, Gao Peng
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China.
ACS Appl Mater Interfaces. 2024 Jun 19;16(24):31114-31125. doi: 10.1021/acsami.4c03761. Epub 2024 Jun 10.
Albeit the undesirable attributes of NiO, such as low conductivity, unmanageable defects, and redox reactions occurring at the perovskite/NiO interface, which impede the progress in inverted perovskite solar cells (i-PSCs), it is the most favorable choice of technology for industrialization of PSCs. In this study, we propose a novel Ni vacancy defect modulate approach to leverage the conformal growth and surface self-limiting reaction characteristics of the atomic layer deposition (ALD)-fabricated NiO by varying the O plasma injection time () to induce self-doping. Consequently, NiO thin films with enhanced conductivity, an appropriate Ni/Ni ratio, stable surface states, and ultrathinness are realized as hole-transporting layers (HTLs) in p-i-n PSCs. As a result of these improvements, ALD-NiO-based devices exhibit the highest power conversion efficiency (PCE) of 19.86% and a fill factor (FF) of 81.86%. Notably, the optimal interfacial defects effectively suppressed the severe reaction between the perovskite and NiO. This suppression is evidenced by the lowest decay rate observed in a harsh environment, lasting for 500 consecutive hours. The proposed approach introduces the possibility of a hierarchical distribution of defects and offers feasibility for the fabrication of large-area, uniform, and high-quality films.
尽管氧化镍存在一些不良特性,如导电性低、缺陷难以控制以及在钙钛矿/氧化镍界面发生氧化还原反应,这些都阻碍了倒置钙钛矿太阳能电池(i-PSC)的发展,但它仍是钙钛矿太阳能电池工业化最有利的技术选择。在本研究中,我们提出了一种新颖的镍空位缺陷调制方法,通过改变氧等离子体注入时间()来利用原子层沉积(ALD)制备的氧化镍的共形生长和表面自限反应特性,以诱导自掺杂。结果,实现了具有增强导电性、合适的镍/镍比、稳定表面态和超薄特性的氧化镍薄膜作为p-i-n钙钛矿太阳能电池中的空穴传输层(HTL)。由于这些改进,基于ALD-氧化镍的器件展现出19.86%的最高功率转换效率(PCE)和81.86%的填充因子(FF)。值得注意的是,最佳的界面缺陷有效抑制了钙钛矿与氧化镍之间的剧烈反应。在恶劣环境下连续500小时观察到的最低衰减率证明了这种抑制作用。所提出的方法引入了缺陷分层分布的可能性,并为大面积、均匀且高质量薄膜的制备提供了可行性。