Aggarwal Shifu, Singh Vijay, Chakraborty Arijit, Cha Sujin, Dimitriou Alexandra, de Crescenzo Claire, Izikson Olivia, Yu Lucy, Plebani Roberto, Tzika A Aria, Rahme Laurence G
Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
mBio. 2024 Jul 17;15(7):e0129224. doi: 10.1128/mbio.01292-24. Epub 2024 Jun 11.
Sepsis and chronic infections with , a leading "ESKAPE" bacterial pathogen, are associated with increased morbidity and mortality and skeletal muscle atrophy. The actions of this pathogen on skeletal muscle remain poorly understood. In skeletal muscle, mitochondria serve as a crucial energy source, which may be perturbed by infection. Here, using the well-established backburn and infection model of murine infection we deciphered the systemic impact of the quorum-sensing transcription factor MvfR (multiple virulence factor regulator) by interrogating, 5 days post-infection, its effect on mitochondrial-related functions in the gastrocnemius skeletal muscle and the outcome of the pharmacological inhibition of MvfR function and that of the mitochondrial-targeted peptide, Szeto-Schiller 31 (SS-31). Our findings show that the MvfR perturbs adenosine triphosphate generation, oxidative phosphorylation, and antioxidant response, elevates the production of reactive oxygen species, and promotes oxidative damage of mitochondrial DNA in the gastrocnemius muscle of infected mice. These impairments in mitochondrial-related functions were corroborated by the alteration of key mitochondrial proteins involved in electron transport, mitochondrial biogenesis, dynamics and quality control, and mitochondrial uncoupling. Pharmacological inhibition of MvfR using the potent anti-MvfR lead, D88, we developed, or the mitochondrial-targeted peptide SS-31 rescued the MvfR-mediated alterations observed in mice infected with the wild-type strain PA14. Our study provides insights into the actions of MvfR in orchestrating mitochondrial dysfunction in the skeletal murine muscle, and it presents novel therapeutic approaches for optimizing clinical outcomes in affected patients.
Skeletal muscle, pivotal for many functions in the human body, including breathing and protecting internal organs, contains abundant mitochondria essential for maintaining cellular homeostasis during infection. The effect of (PA) infections on skeletal muscle remains poorly understood. Our study delves into the role of a central quorum-sensing transcription factor, multiple virulence factor regulator (MvfR), that controls the expression of multiple acute and chronic virulence functions that contribute to the pathogenicity of PA. The significance of our study lies in the role of MvfR in the metabolic perturbances linked to mitochondrial functions in skeletal muscle and the effectiveness of the novel MvfR inhibitor and the mitochondrial-targeted peptide SS-31 in alleviating the mitochondrial disturbances caused by PA in skeletal muscle. Inhibiting MvfR or interfering with its effects can be a potential therapeutic strategy to curb PA virulence.
败血症以及由主要的“ESKAPE”细菌病原体[具体细菌名称未给出]引起的慢性感染,与发病率和死亡率增加以及骨骼肌萎缩相关。这种病原体对骨骼肌的作用仍知之甚少。在骨骼肌中,线粒体是关键的能量来源,可能会受到感染的干扰。在此,我们利用成熟的小鼠[具体细菌名称未给出]感染的回燃和感染模型,通过在感染后5天探究群体感应转录因子MvfR(多种毒力因子调节因子)对腓肠肌骨骼肌中线粒体相关功能的影响以及MvfR功能和线粒体靶向肽塞托 - 席勒31(SS - 31)的药理抑制结果,来解读其对全身的影响。我们的研究结果表明,MvfR会扰乱三磷酸腺苷的生成、氧化磷酸化和抗氧化反应,提高活性氧的产生,并促进感染小鼠腓肠肌中线粒体DNA的氧化损伤。线粒体相关功能的这些损害通过参与电子传递、线粒体生物发生、动态变化和质量控制以及线粒体解偶联的关键线粒体蛋白的改变得到了证实。使用我们开发的强效抗MvfR先导化合物D88或线粒体靶向肽SS - 31对MvfR进行药理抑制,挽救了在感染野生型菌株PA14的小鼠中观察到的MvfR介导的改变。我们的研究深入了解了MvfR在协调小鼠骨骼肌线粒体功能障碍中的作用,并提出了优化受影响患者临床结果的新治疗方法。
骨骼肌对人体的许多功能至关重要,包括呼吸和保护内部器官,含有丰富的线粒体,对于在感染期间维持细胞内稳态必不可少。[具体细菌名称未给出](PA)感染对骨骼肌的影响仍知之甚少。我们的研究深入探讨了一个核心群体感应转录因子,即多种毒力因子调节因子(MvfR)的作用,它控制着多种急性和慢性毒力功能的表达,这些功能有助于PA的致病性。我们研究的意义在于MvfR在与骨骼肌线粒体功能相关的代谢紊乱中的作用,以及新型MvfR抑制剂和线粒体靶向肽SS - 31在减轻PA在骨骼肌中引起的线粒体紊乱方面的有效性。抑制MvfR或干扰其作用可能是抑制PA毒力的一种潜在治疗策略。