Suppr超能文献

基于贝叶斯的多重图分类器对认知控制不同任务下大脑功能连接的分析。

A Bayesian Multiplex Graph Classifier of Functional Brain Connectivity Across Diverse Tasks of Cognitive Control.

机构信息

Department of Statistics, Texas A&M University, 3143 TAMU, College Station, 77843, TX, USA.

Statistics Online Computational Resource, University of Michigan, 426 N. Ingalls St., Ann Arbor, 48109, MI, USA.

出版信息

Neuroinformatics. 2024 Oct;22(4):457-472. doi: 10.1007/s12021-024-09670-w. Epub 2024 Jun 11.

Abstract

This article seeks to investigate the impact of aging on functional connectivity across different cognitive control scenarios, particularly emphasizing the identification of brain regions significantly associated with early aging. By conceptualizing functional connectivity within each cognitive control scenario as a graph, with brain regions as nodes, the statistical challenge revolves around devising a regression framework to predict a binary scalar outcome (aging or normal) using multiple graph predictors. Popular regression methods utilizing multiplex graph predictors often face limitations in effectively harnessing information within and across graph layers, leading to potentially less accurate inference and predictive accuracy, especially for smaller sample sizes. To address this challenge, we propose the Bayesian Multiplex Graph Classifier (BMGC). Accounting for multiplex graph topology, our method models edge coefficients at each graph layer using bilinear interactions between the latent effects associated with the two nodes connected by the edge. This approach also employs a variable selection framework on node-specific latent effects from all graph layers to identify influential nodes linked to observed outcomes. Crucially, the proposed framework is computationally efficient and quantifies the uncertainty in node identification, coefficient estimation, and binary outcome prediction. BMGC outperforms alternative methods in terms of the aforementioned metrics in simulation studies. An additional BMGC validation was completed using an fMRI study of brain networks in adults. The proposed BMGC technique identified that sensory motor brain network obeys certain lateral symmetries, whereas the default mode network exhibits significant brain asymmetries associated with early aging.

摘要

本文旨在研究衰老对不同认知控制情境下功能连接的影响,特别强调识别与早期衰老显著相关的脑区。通过将每个认知控制情境中的功能连接概念化为一个图,其中脑区为节点,统计挑战在于设计一个回归框架,使用多个图预测因子来预测二元标量结果(衰老或正常)。利用多重图预测因子的常用回归方法在有效地利用图内和图间信息方面往往存在局限性,从而导致潜在的推断和预测准确性降低,尤其是在较小的样本量下。为了解决这个挑战,我们提出了贝叶斯多重图分类器(BMGC)。考虑到多重图拓扑结构,我们的方法使用连接两个节点的边缘上的潜在效应之间的双线性交互作用,对每个图层的边缘系数进行建模。该方法还在来自所有图层的节点特定潜在效应上使用变量选择框架,以识别与观察结果相关的有影响力的节点。至关重要的是,所提出的框架在计算上是高效的,并量化了节点识别、系数估计和二元结果预测的不确定性。在模拟研究中,BMGC 在上述指标方面优于其他方法。使用成人脑网络的 fMRI 研究完成了对 BMGC 的额外验证。所提出的 BMGC 技术确定了感觉运动脑网络遵循某些侧面对称性,而默认模式网络表现出与早期衰老相关的显著大脑不对称性。

相似文献

1
A Bayesian Multiplex Graph Classifier of Functional Brain Connectivity Across Diverse Tasks of Cognitive Control.
Neuroinformatics. 2024 Oct;22(4):457-472. doi: 10.1007/s12021-024-09670-w. Epub 2024 Jun 11.
2
Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
Neuroimage. 2017 Jul 15;155:271-290. doi: 10.1016/j.neuroimage.2017.02.083. Epub 2017 Mar 4.
3
Time-dependence of graph theory metrics in functional connectivity analysis.
Neuroimage. 2016 Jan 15;125:601-615. doi: 10.1016/j.neuroimage.2015.10.070. Epub 2015 Oct 27.
5
Connectome-based models predict attentional control in aging adults.
Neuroimage. 2019 Feb 1;186:1-13. doi: 10.1016/j.neuroimage.2018.10.074. Epub 2018 Oct 28.
7
Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets.
Neuroimage. 2017 Feb 15;147:243-252. doi: 10.1016/j.neuroimage.2016.11.073. Epub 2016 Dec 1.
10
Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.
J Neurosci. 2017 Mar 8;37(10):2734-2745. doi: 10.1523/JNEUROSCI.2406-16.2017. Epub 2017 Feb 7.

本文引用的文献

1
A deep connectome learning network using graph convolution for connectome-disease association study.
Neural Netw. 2023 Jul;164:91-104. doi: 10.1016/j.neunet.2023.04.025. Epub 2023 Apr 22.
2
Brain structure and allelic associations in Alzheimer's disease.
CNS Neurosci Ther. 2023 Apr;29(4):1034-1048. doi: 10.1111/cns.14073. Epub 2022 Dec 27.
3
Dataset of functional connectivity during cognitive control for an adult lifespan sample.
Data Brief. 2021 Nov 15;39:107573. doi: 10.1016/j.dib.2021.107573. eCollection 2021 Dec.
4
The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases.
Brain Commun. 2021 Sep 6;3(3):fcab211. doi: 10.1093/braincomms/fcab211. eCollection 2021.
5
Reconfiguration and dedifferentiation of functional networks during cognitive control across the adult lifespan.
Neurobiol Aging. 2021 Oct;106:80-94. doi: 10.1016/j.neurobiolaging.2021.03.019. Epub 2021 Jun 16.
6
Community detection with node attributes in multilayer networks.
Sci Rep. 2020 Sep 25;10(1):15736. doi: 10.1038/s41598-020-72626-y.
7
Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI.
Cereb Cortex. 2018 Sep 1;28(9):3095-3114. doi: 10.1093/cercor/bhx179.
8
Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age.
Neuroimage. 2017 Jul 1;154:240-254. doi: 10.1016/j.neuroimage.2017.02.028. Epub 2017 Feb 12.
9
MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA.
Ann Appl Stat. 2015 Sep;9(3):1169-1193. doi: 10.1214/15-AOAS839. Epub 2015 Nov 2.
10
Tensor Regression with Applications in Neuroimaging Data Analysis.
J Am Stat Assoc. 2013;108(502):540-552. doi: 10.1080/01621459.2013.776499.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验