Logacjov Aleksej, Skarpsno Eivind Schjelderup, Kongsvold Atle, Bach Kerstin, Mork Paul Jarle
Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway.
Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.
Nat Sci Sleep. 2024 Jun 6;16:699-710. doi: 10.2147/NSS.S452799. eCollection 2024.
Body-worn accelerometers are commonly used to estimate sleep duration in population-based studies. However, since accelerometry-based sleep/wake-scoring relies on detecting body movements, the prediction of sleep duration remains a challenge. The aim was to develop and evaluate the performance of a machine learning (ML) model to predict accelerometry-based sleep duration and to explore if this prediction can be improved by adding skin temperature data, circadian rhythm based on the estimated midpoint of sleep, and cyclic time features to the model.
Twenty-nine adults (17 females), mean (SD) age 40.2 (15.0) years (range 17-70) participated in the study. Overnight polysomnography (PSG) was recorded in a sleep laboratory or at home along with body movement by two accelerometers with an embedded skin temperature sensor (AX3, Axivity, UK) positioned at the low back and thigh. The PSG scoring of sleep/wake was used as ground truth for training the ML model.
Based on pure accelerometer data input to the ML model, the specificity and sensitivity for predicting sleep/wake was 0.52 (SD 0.24) and 0.95 (SD 0.03), respectively. Adding skin temperature data and contextual information to the ML model improved the specificity to 0.72 (SD 0.20), while sensitivity remained unchanged at 0.95 (SD 0.05). Correspondingly, sleep overestimation was reduced from 54 min (228 min, limits of agreement range [LoAR]) to 19 min (154 min LoAR).
An ML model can predict sleep/wake periods with excellent sensitivity and moderate specificity based on a dual-accelerometer set-up when adding skin temperature data and contextual information to the model.
在基于人群的研究中,穿戴式加速度计常用于估计睡眠时间。然而,由于基于加速度计的睡眠/觉醒评分依赖于检测身体运动,睡眠时间的预测仍然是一项挑战。本研究的目的是开发并评估一种机器学习(ML)模型预测基于加速度计的睡眠时间的性能,并探讨通过向模型中添加皮肤温度数据、基于估计睡眠中点的昼夜节律以及循环时间特征,能否改善这一预测。
29名成年人(17名女性)参与了本研究,平均(标准差)年龄为40.2(15.0)岁(范围17 - 70岁)。在睡眠实验室或家中进行了整夜多导睡眠图(PSG)记录,同时使用两个带有嵌入式皮肤温度传感器(AX3,Axivity,英国)的加速度计记录身体运动,传感器分别置于下背部和大腿处。PSG的睡眠/觉醒评分被用作训练ML模型的金标准。
基于输入到ML模型中的纯加速度计数据,预测睡眠/觉醒的特异性和敏感性分别为0.52(标准差0.24)和0.95(标准差0.03)。向ML模型中添加皮肤温度数据和背景信息后,特异性提高到了0.72(标准差0.20),而敏感性保持不变,仍为0.95(标准差0.05)。相应地,睡眠高估从54分钟(一致限范围[LoAR]为228分钟)减少到了19分钟(LoAR为154分钟)。
当向模型中添加皮肤温度数据和背景信息时,基于双加速度计设置的ML模型能够以出色的敏感性和中等特异性预测睡眠/觉醒周期。