Suppr超能文献

使用腕部加速度计数据测量睡眠与多导睡眠图比较。

Sleep Measurement Using Wrist-Worn Accelerometer Data Compared with Polysomnography.

机构信息

Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA.

Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.

出版信息

Sensors (Basel). 2022 Jul 4;22(13):5041. doi: 10.3390/s22135041.

Abstract

This study determined if using alternative sleep onset (SO) definitions impacted accelerometer-derived sleep estimates compared with polysomnography (PSG). Nineteen participants (48%F) completed a 48 h visit in a home simulation laboratory. Sleep characteristics were calculated from the second night by PSG and a wrist-worn ActiGraph GT3X+ (AG). Criterion sleep measures included PSG-derived Total Sleep Time (TST), Sleep Onset Latency (SOL), Wake After Sleep Onset (WASO), Sleep Efficiency (SE), and Efficiency Once Asleep (SE_ASLEEP). Analogous variables were derived from temporally aligned AG data using the Cole-Kripke algorithm. For PSG, SO was defined as the first score of 'sleep'. For AG, SO was defined three ways: 1-, 5-, and 10-consecutive minutes of 'sleep'. Agreement statistics and linear mixed effects regression models were used to analyze 'Device' and 'Sleep Onset Rule' main effects and interactions. Sleep-wake agreement and sensitivity for all AG methods were high (89.0-89.5% and 97.2%, respectively); specificity was low (23.6-25.1%). There were no significant interactions or main effects of 'Sleep Onset Rule' for any variable. The AG underestimated SOL (19.7 min) and WASO (6.5 min), and overestimated TST (26.2 min), SE (6.5%), and SE_ASLEEP (1.9%). Future research should focus on developing sleep-wake detection algorithms and incorporating biometric signals (e.g., heart rate).

摘要

这项研究旨在确定使用替代睡眠起始 (SO) 定义是否会影响与多导睡眠图 (PSG) 相比,基于加速度计的睡眠估计。19 名参与者 (48%F) 在家庭模拟实验室完成了 48 小时的访问。通过 PSG 和腕戴 ActiGraph GT3X+ (AG) 计算第二晚的睡眠特征。标准睡眠测量包括 PSG 衍生的总睡眠时间 (TST)、睡眠起始潜伏期 (SOL)、睡眠后觉醒时间 (WASO)、睡眠效率 (SE) 和入睡后效率 (SE_ASLEEP)。从时间对齐的 AG 数据中使用 Cole-Kripke 算法得出类似的变量。对于 PSG,SO 定义为“睡眠”的第一个分数。对于 AG,SO 有三种定义方式:1、5 和 10 分钟的“睡眠”。使用一致性统计和线性混合效应回归模型来分析“设备”和“睡眠起始规则”的主要影响和相互作用。所有 AG 方法的睡眠-觉醒一致性和敏感性都很高 (89.0-89.5%和 97.2%);特异性较低 (23.6-25.1%)。对于任何变量,“睡眠起始规则”都没有显著的相互作用或主要影响。AG 低估了 SOL (19.7 min) 和 WASO (6.5 min),高估了 TST (26.2 min)、SE (6.5%)和 SE_ASLEEP (1.9%)。未来的研究应集中开发睡眠-觉醒检测算法,并纳入生物识别信号 (如心率)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf9a/9269695/77415a233b44/sensors-22-05041-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验