Lang Franziska, Sorn Patrick, Suchan Martin, Henrich Alina, Albrecht Christian, Köhl Nina, Beicht Aline, Riesgo-Ferreiro Pablo, Holtsträter Christoph, Schrörs Barbara, Weber David, Löwer Martin, Sahin Ugur, Ibn-Salem Jonas
TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany.
Faculty of Biology, Johannes Gutenberg University Mainz, Mainz 55128, Germany.
Bioinform Adv. 2024 May 29;4(1):vbae080. doi: 10.1093/bioadv/vbae080. eCollection 2024.
Neoantigens are promising targets for cancer immunotherapies and might arise from alternative splicing. However, detecting tumor-specific splicing is challenging because many non-canonical splice junctions identified in tumors also appear in healthy tissues. To increase tumor-specificity, we focused on splicing caused by somatic mutations as a source for neoantigen candidates in individual patients.
We developed the tool splice2neo with multiple functionalities to integrate predicted splice effects from somatic mutations with splice junctions detected in tumor RNA-seq and to annotate the resulting transcript and peptide sequences. Additionally, we provide the tool EasyQuant for targeted RNA-seq read mapping to candidate splice junctions. Using a stringent detection rule, we predicted 1.7 splice junctions per patient as splice targets with a false discovery rate below 5% in a melanoma cohort. We confirmed tumor-specificity using independent, healthy tissue samples. Furthermore, using tumor-derived RNA, we confirmed individual exon-skipping events experimentally. Most target splice junctions encoded neoepitope candidates with predicted major histocompatibility complex (MHC)-I or MHC-II binding. Compared to neoepitope candidates from non-synonymous point mutations, the splicing-derived MHC-I neoepitope candidates had lower self-similarity to corresponding wild-type peptides. In conclusion, we demonstrate that identifying mutation-derived, tumor-specific splice junctions can lead to additional neoantigen candidates to expand the target repertoire for cancer immunotherapies.
The R package splice2neo and the python package EasyQuant are available at https://github.com/TRON-Bioinformatics/splice2neo and https://github.com/TRON-Bioinformatics/easyquant, respectively.
新抗原是癌症免疫疗法很有前景的靶点,可能源于可变剪接。然而,检测肿瘤特异性剪接具有挑战性,因为在肿瘤中鉴定出的许多非规范剪接接头在健康组织中也会出现。为了提高肿瘤特异性,我们将重点放在由体细胞突变引起的剪接上,将其作为个体患者新抗原候选物的来源。
我们开发了具有多种功能的工具splice2neo,以将体细胞突变预测的剪接效应与肿瘤RNA测序中检测到的剪接接头整合起来,并注释产生的转录本和肽序列。此外,我们提供了工具EasyQuant用于将靶向RNA测序读数定位到候选剪接接头上。使用严格的检测规则,我们在一个黑色素瘤队列中预测每位患者有1.7个剪接接头为剪接靶点,错误发现率低于5%。我们使用独立的健康组织样本确认了肿瘤特异性。此外,利用肿瘤来源的RNA,我们通过实验确认了个体外显子跳跃事件。大多数靶向剪接接头编码了预测与主要组织相容性复合体(MHC)-I或MHC-II结合的新表位候选物。与非同义点突变产生的新表位候选物相比,剪接衍生的MHC-I新表位候选物与相应野生型肽的自身相似性较低。总之,我们证明识别突变衍生的肿瘤特异性剪接接头可以产生额外的新抗原候选物,以扩大癌症免疫疗法的靶点库。
R包splice2neo和Python包EasyQuant分别可在https://github.com/TRON-Bioinformatics/splice2neo和https://github.com/TRON-Bioinformatics/easyquant获得。