Suppr超能文献

Neopepsee:通过利用序列和氨基酸免疫原性信息实现对新抗原的精确基因组水平预测。

Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information.

机构信息

Severance Biomedical Science Institute.

Department of Pharmacology, Pharmacogenomic Research Center for Membrane Transporters, Brain Korea 21 PLUS Project for Medical Sciences; Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul.

出版信息

Ann Oncol. 2018 Apr 1;29(4):1030-1036. doi: 10.1093/annonc/mdy022.

Abstract

BACKGROUND

Tumor-specific mutations form novel immunogenic peptides called neoantigens. Neoantigens can be used as a biomarker predicting patient response to cancer immunotherapy. Although a predicted binding affinity (IC50) between peptide and major histocompatibility complex class I is currently used for neoantigen prediction, large number of false-positives exist.

MATERIALS AND METHODS

We developed Neopepsee, a machine-learning-based neoantigen prediction program for next-generation sequencing data. With raw RNA-seq data and a list of somatic mutations, Neopepsee automatically extracts mutated peptide sequences and gene expression levels. We tested 14 immunogenicity features to construct a machine-learning classifier and compared with the conventional methods based on IC50 regarding sensitivity and specificity. We tested Neopepsee on independent datasets from melanoma, leukemia, and stomach cancer.

RESULTS

Nine of the 14 immunogenicity features that are informative and inter-independent were used to construct the machine-learning classifiers. Neopepsee provides a rich annotation of candidate peptides with 87 immunogenicity-related values, including IC50, expression levels of neopeptides and immune regulatory genes (e.g. PD1, PD-L1), matched epitope sequences, and a three-level (high, medium, and low) call for neoantigen probability. Compared with the conventional methods, the performance was improved in sensitivity and especially two- to threefold in the specificity. Tests with validated datasets and independently proven neoantigens confirmed the improved performance in melanoma and chronic lymphocytic leukemia. Additionally, we found sequence similarity in proteins to known pathogenic epitopes to be a novel feature in classification. Application of Neopepsee to 224 public stomach adenocarcinoma datasets predicted ∼7 neoantigens per patient, the burden of which was correlated with patient prognosis.

CONCLUSIONS

Neopepsee can detect neoantigen candidates with less false positives and be used to determine the prognosis of the patient. We expect that retrieval of neoantigen sequences with Neopepsee will help advance research on next-generation cancer immunotherapies, predictive biomarkers, and personalized cancer vaccines.

摘要

背景

肿瘤特异性突变形成了新型免疫原性肽,称为新抗原。新抗原可用作预测患者对癌症免疫疗法反应的生物标志物。尽管目前使用肽与主要组织相容性复合体 I 之间的预测结合亲和力(IC50)来预测新抗原,但存在大量假阳性。

材料和方法

我们开发了基于机器学习的下一代测序数据新抗原预测程序 Neopepsee。使用原始 RNA-seq 数据和体细胞突变列表,Neopepsee 自动提取突变肽序列和基因表达水平。我们测试了 14 种免疫原性特征来构建机器学习分类器,并与基于 IC50 的传统方法比较了敏感性和特异性。我们在黑色素瘤、白血病和胃癌的独立数据集上测试了 Neopepsee。

结果

在构建机器学习分类器时,使用了 9 个信息丰富且相互独立的 14 种免疫原性特征之一。Neopepsee 提供了候选肽的丰富注释,具有 87 种与免疫相关的值,包括 IC50、新肽和免疫调节基因(如 PD1、PD-L1)的表达水平、匹配的表位序列以及新抗原概率的三级(高、中、低)调用。与传统方法相比,该性能在敏感性方面得到了提高,尤其是在特异性方面提高了两到三倍。在验证数据集和独立验证的新抗原测试中,证实了在黑色素瘤和慢性淋巴细胞白血病中的性能提高。此外,我们发现蛋白质与已知致病性表位的序列相似性是分类中的一个新特征。将 Neopepsee 应用于 224 个公共胃腺癌数据集,预测每位患者约有 7 个新抗原,其负担与患者预后相关。

结论

Neopepsee 可以检测到较少假阳性的新抗原候选物,并用于确定患者的预后。我们期望使用 Neopepsee 检索新抗原序列将有助于推进下一代癌症免疫疗法、预测生物标志物和个性化癌症疫苗的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验