Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.
Clin Cancer Res. 2024 Aug 15;30(16):3499-3511. doi: 10.1158/1078-0432.CCR-24-0657.
Intrahepatic cholangiocarcinoma (IHC) is a heterogeneous tumor. The hidden-genome classifier, a supervised machine learning-based algorithm, was used to quantify tumor heterogeneity and improve classification.
A retrospective review of 1,370 patients with IHC, extrahepatic cholangiocarcinoma (EHC), gallbladder cancer (GBC), hepatocellular carcinoma (HCC), or biphenotypic tumors was conducted. A hidden-genome model classified 527 IHC based on genetic similarity to EHC/GBC or HCC. Genetic, histologic, and clinical data were correlated.
In this study, 410 IHC (78%) had >50% genetic homology with EHC/GBC; 122 (23%) had >90% homology ("biliary class"), characterized by alterations of KRAS, SMAD4, and CDKN2A loss; 117 IHC (22%) had >50% genetic homology with HCC; and 30 (5.7%) had >90% homology ("HCC class"), characterized by TERT alterations. Patients with biliary- versus non-biliary-class IHC had median overall survival (OS) of 1 year (95% CI, 0.77, 1.5) versus 1.8 years (95% CI, 1.6, 2.0) for unresectable disease and 2.4 years (95% CI, 2.1, NR) versus 5.1 years (95% CI, 4.8, 6.9) for resectable disease. Large-duct IHC (n = 28) was more common in the biliary class (n = 27); the HCC class was composed mostly of small-duct IHC (64%, P = 0.02). The hidden genomic classifier predicted OS independent of FGFR2 and IDH1 alterations. By contrast, the histology subtype did not predict OS.
IHC genetics form a spectrum with worse OS for tumors genetically aligned with EHC/GBC. The classifier proved superior to histologic subtypes for predicting OS independent of FGFR2 and IDH1 alterations. These results may explain the differential treatment responses seen in IHC and may direct therapy by helping stratify patients in future clinical trials.
肝内胆管癌(IHC)是一种异质性肿瘤。基于监督机器学习的隐藏基因组分类器算法用于量化肿瘤异质性并提高分类准确性。
回顾性分析了 1370 例 IHC、肝外胆管癌(EHC)、胆囊癌(GBC)、肝细胞癌(HCC)或双表型肿瘤患者的资料。隐藏基因组模型根据与 EHC/GBC 或 HCC 的遗传相似性对 527 例 IHC 进行分类。对遗传、组织学和临床数据进行了相关性分析。
本研究中,410 例 IHC(78%)与 EHC/GBC 的遗传同源性>50%;122 例(23%)同源性>90%(“胆管类”),特征为 KRAS、SMAD4 和 CDKN2A 缺失改变;117 例 IHC(22%)与 HCC 的遗传同源性>50%;30 例(5.7%)同源性>90%(“HCC 类”),特征为 TERT 改变。胆管类与非胆管类 IHC 患者的不可切除疾病中位总生存期(OS)分别为 1 年(95%CI,0.77,1.5)和 1.8 年(95%CI,1.6,2.0),可切除疾病分别为 2.4 年(95%CI,2.1,NR)和 5.1 年(95%CI,4.8,6.9)。大导管 IHC(n=28)在胆管类中更为常见(n=27);HCC 类主要由小导管 IHC 组成(64%,P=0.02)。隐藏基因组分类器预测 OS 独立于 FGFR2 和 IDH1 改变。相比之下,组织学亚型不能预测 OS。
IHC 的遗传学形成一个谱,与 EHC/GBC 遗传上一致的肿瘤 OS 更差。该分类器在预测 OS 方面优于组织学亚型,且独立于 FGFR2 和 IDH1 改变。这些结果可能解释了 IHC 中观察到的不同治疗反应,并可能通过帮助分层患者来指导未来临床试验中的治疗。