Suppr超能文献

基于炎症生物标志物预测胆管癌免疫治疗后生存的列线图

Nomogram for Predicting Survival Post-Immune Therapy in Cholangiocarcinoma Based on Inflammatory Biomarkers.

作者信息

Jin Jianan, Mou Haibo, Zhou Yibin, Zhang Shiqi

机构信息

Graduate School, Zhejiang Chinese Medical University, Hangzhou, P.R. China.

Department of Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, P.R. China.

出版信息

Cancer Control. 2024 Jan-Dec;31:10732748241305237. doi: 10.1177/10732748241305237.

Abstract

BACKGROUND

Immune therapy, especially involving PD-1/PD-L1 inhibitors, has shown promise as a therapeutic option for cholangiocarcinoma. However, limited studies have evaluated survival outcomes in cholangiocarcinoma patients treated with immune therapy. This study aims to develop a predictive model to evaluate the survival benefits of immune therapy in patients with cholangiocarcinoma.

METHODS

This retrospective analysis included 120 cholangiocarcinoma patients from Shulan (Hangzhou) Hospital. Univariate and multivariate Cox regression analyses were conducted to identify factors associated with survival following immune therapy. A predictive model was constructed and validated using calibration curves (CC), decision curve analysis (DCA), concordance index (C-index), and receiver operating characteristic (ROC) curves.

RESULTS

Cox regression analysis identified several factors as potential predictors of survival post-immune therapy in cholangiocarcinoma: treatment cycle (<6 vs ≥ 6 months, 95% CI: 0.119-0.586, = 0.001), neutrophil-to-lymphocyte ratio (NLR <3.08 vs ≥ 3.08, 95% CI: 1.864-9.624, = 0.001), carcinoembryonic antigen (CEA <4.13 vs ≥ 4.13, 95% CI: 1.175-5.321, = 0.017), and presence of bone metastasis (95% CI: 1.306-6.848, = 0.010). The nomogram model achieved good predictive accuracy with a C-index of 0.811. CC indicated strong concordance between the predicted and observed outcomes. Multi-timepoint ROC curves at 1, 2, and 3 years validated the model's performance (1-year AUC: 0.906, 2-year AUC: 0.832, 3-year AUC: 0.822). The multi-timepoint DCA curves also demonstrated a higher net benefit compared to extreme curves.

CONCLUSION

The nomogram model, incorporating key risk factors for cholangiocarcinoma patients post-immune therapy, demonstrates robust predictive accuracy for survival outcomes, offering the potential for improved clinical decision-making.

摘要

背景

免疫疗法,尤其是涉及程序性死亡蛋白 1(PD - 1)/程序性死亡配体 1(PD - L1)抑制剂的免疫疗法,已显示出有望成为胆管癌的一种治疗选择。然而,评估接受免疫疗法治疗的胆管癌患者生存结局的研究有限。本研究旨在建立一种预测模型,以评估免疫疗法对胆管癌患者的生存益处。

方法

这项回顾性分析纳入了来自杭州树兰医院的 120 例胆管癌患者。进行单因素和多因素 Cox 回归分析,以确定与免疫疗法后生存相关的因素。使用校准曲线(CC)、决策曲线分析(DCA)、一致性指数(C 指数)和受试者工作特征(ROC)曲线构建并验证预测模型。

结果

Cox 回归分析确定了几个因素作为胆管癌免疫疗法后生存的潜在预测因素:治疗周期(<6 个月与≥6 个月,95%置信区间:0.119 - 0.586,P = 0.001)、中性粒细胞与淋巴细胞比值(NLR <3.08 与≥3.08,95%置信区间:1.864 - 9.624,P = 0.001)、癌胚抗原(CEA <4.13 与≥4.13,95%置信区间:1.175 - 5.321,P = 0.017)以及骨转移的存在(95%置信区间:1.306 - 6.848,P = 0.010)。列线图模型的 C 指数为 0.811,具有良好的预测准确性。CC 表明预测结果与观察结果之间具有高度一致性。1 年、2 年和 3 年的多时间点 ROC 曲线验证了模型的性能(1 年 AUC:0.906,2 年 AUC:0.832,3 年 AUC:0.822)。多时间点 DCA 曲线也显示与极端曲线相比具有更高的净效益。

结论

该列线图模型纳入了胆管癌患者免疫疗法后的关键风险因素,对生存结局具有强大的预测准确性,为改善临床决策提供了潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a61c/11622305/31cad9d4e60a/10.1177_10732748241305237-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验