Department of Physiology, University of Bern, Bern, Switzerland.
Electrical Engineering, Yale University, New Haven, Connecticut, United States of America.
PLoS Comput Biol. 2024 Jun 12;20(6):e1012047. doi: 10.1371/journal.pcbi.1012047. eCollection 2024 Jun.
A fundamental function of cortical circuits is the integration of information from different sources to form a reliable basis for behavior. While animals behave as if they optimally integrate information according to Bayesian probability theory, the implementation of the required computations in the biological substrate remains unclear. We propose a novel, Bayesian view on the dynamics of conductance-based neurons and synapses which suggests that they are naturally equipped to optimally perform information integration. In our approach apical dendrites represent prior expectations over somatic potentials, while basal dendrites represent likelihoods of somatic potentials. These are parametrized by local quantities, the effective reversal potentials and membrane conductances. We formally demonstrate that under these assumptions the somatic compartment naturally computes the corresponding posterior. We derive a gradient-based plasticity rule, allowing neurons to learn desired target distributions and weight synaptic inputs by their relative reliabilities. Our theory explains various experimental findings on the system and single-cell level related to multi-sensory integration, which we illustrate with simulations. Furthermore, we make experimentally testable predictions on Bayesian dendritic integration and synaptic plasticity.
皮质电路的一个基本功能是整合来自不同来源的信息,为行为提供可靠的基础。虽然动物的行为表现似乎是根据贝叶斯概率理论进行了最优的信息整合,但生物基质中所需计算的实现仍然不清楚。我们提出了一种基于电导的神经元和突触动力学的新的贝叶斯观点,表明它们天生就具备最优地进行信息整合的能力。在我们的方法中,树突的顶端代表着对胞体电势的先验期望,而树突的基底则代表着胞体电势的可能性。这些由局部量,即有效反转电位和膜电导来参数化。我们正式证明,在这些假设下,胞体自然地计算出相应的后验。我们推导出了一种基于梯度的可塑性规则,允许神经元通过相对可靠性来学习所需的目标分布,并对突触输入进行加权。我们的理论解释了与多感觉整合相关的系统和单细胞水平的各种实验结果,并用模拟进行了说明。此外,我们对贝叶斯树突整合和突触可塑性做出了可进行实验检验的预测。