Suppr超能文献

基于电导的树突实现贝叶斯最优线索整合。

Conductance-based dendrites perform Bayes-optimal cue integration.

机构信息

Department of Physiology, University of Bern, Bern, Switzerland.

Electrical Engineering, Yale University, New Haven, Connecticut, United States of America.

出版信息

PLoS Comput Biol. 2024 Jun 12;20(6):e1012047. doi: 10.1371/journal.pcbi.1012047. eCollection 2024 Jun.

Abstract

A fundamental function of cortical circuits is the integration of information from different sources to form a reliable basis for behavior. While animals behave as if they optimally integrate information according to Bayesian probability theory, the implementation of the required computations in the biological substrate remains unclear. We propose a novel, Bayesian view on the dynamics of conductance-based neurons and synapses which suggests that they are naturally equipped to optimally perform information integration. In our approach apical dendrites represent prior expectations over somatic potentials, while basal dendrites represent likelihoods of somatic potentials. These are parametrized by local quantities, the effective reversal potentials and membrane conductances. We formally demonstrate that under these assumptions the somatic compartment naturally computes the corresponding posterior. We derive a gradient-based plasticity rule, allowing neurons to learn desired target distributions and weight synaptic inputs by their relative reliabilities. Our theory explains various experimental findings on the system and single-cell level related to multi-sensory integration, which we illustrate with simulations. Furthermore, we make experimentally testable predictions on Bayesian dendritic integration and synaptic plasticity.

摘要

皮质电路的一个基本功能是整合来自不同来源的信息,为行为提供可靠的基础。虽然动物的行为表现似乎是根据贝叶斯概率理论进行了最优的信息整合,但生物基质中所需计算的实现仍然不清楚。我们提出了一种基于电导的神经元和突触动力学的新的贝叶斯观点,表明它们天生就具备最优地进行信息整合的能力。在我们的方法中,树突的顶端代表着对胞体电势的先验期望,而树突的基底则代表着胞体电势的可能性。这些由局部量,即有效反转电位和膜电导来参数化。我们正式证明,在这些假设下,胞体自然地计算出相应的后验。我们推导出了一种基于梯度的可塑性规则,允许神经元通过相对可靠性来学习所需的目标分布,并对突触输入进行加权。我们的理论解释了与多感觉整合相关的系统和单细胞水平的各种实验结果,并用模拟进行了说明。此外,我们对贝叶斯树突整合和突触可塑性做出了可进行实验检验的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d423/11168673/8186244ca54d/pcbi.1012047.g001.jpg

相似文献

1
Conductance-based dendrites perform Bayes-optimal cue integration.
PLoS Comput Biol. 2024 Jun 12;20(6):e1012047. doi: 10.1371/journal.pcbi.1012047. eCollection 2024 Jun.
2
Network Plasticity as Bayesian Inference.
PLoS Comput Biol. 2015 Nov 6;11(11):e1004485. doi: 10.1371/journal.pcbi.1004485. eCollection 2015 Nov.
3
Spatial localization of synapses required for supralinear summation of action potentials and EPSPs.
J Comput Neurosci. 2004 May-Jun;16(3):251-65. doi: 10.1023/B:JCNS.0000025688.64836.df.
4
Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites.
PLoS Comput Biol. 2016 Feb 3;12(2):e1004638. doi: 10.1371/journal.pcbi.1004638. eCollection 2016 Feb.
5
Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity.
J Neurophysiol. 2004 May;91(5):2273-80. doi: 10.1152/jn.00900.2003. Epub 2003 Dec 17.
6
Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity.
PLoS Comput Biol. 2013 Apr;9(4):e1003037. doi: 10.1371/journal.pcbi.1003037. Epub 2013 Apr 25.
7
Locally balanced dendritic integration by short-term synaptic plasticity and active dendritic conductances.
J Neurophysiol. 2009 Dec;102(6):3234-50. doi: 10.1152/jn.00260.2009. Epub 2009 Sep 16.
8
Synaptic computation underlying probabilistic inference.
Nat Neurosci. 2010 Jan;13(1):112-9. doi: 10.1038/nn.2450. Epub 2009 Dec 13.
9
Spike-timing-dependent synaptic plasticity and synaptic democracy in dendrites.
J Neurophysiol. 2009 Jun;101(6):3226-34. doi: 10.1152/jn.91349.2008. Epub 2009 Apr 8.
10
Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity.
J Neurosci. 2017 Dec 13;37(50):12106-12122. doi: 10.1523/JNEUROSCI.0027-17.2017. Epub 2017 Oct 31.

引用本文的文献

1
Natural-gradient learning for spiking neurons.
Elife. 2022 Apr 25;11:e66526. doi: 10.7554/eLife.66526.

本文引用的文献

1
Synaptic plasticity as Bayesian inference.
Nat Neurosci. 2021 Apr;24(4):565-571. doi: 10.1038/s41593-021-00809-5. Epub 2021 Mar 11.
2
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference.
Nat Neurosci. 2020 Sep;23(9):1138-1149. doi: 10.1038/s41593-020-0671-1. Epub 2020 Aug 10.
3
Representation of visual uncertainty through neural gain variability.
Nat Commun. 2020 May 19;11(1):2513. doi: 10.1038/s41467-020-15533-0.
4
Synaptic Plasticity Forms and Functions.
Annu Rev Neurosci. 2020 Jul 8;43:95-117. doi: 10.1146/annurev-neuro-090919-022842. Epub 2020 Feb 19.
5
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
6
Deterministic networks for probabilistic computing.
Sci Rep. 2019 Dec 4;9(1):18303. doi: 10.1038/s41598-019-54137-7.
7
Stochasticity from function - Why the Bayesian brain may need no noise.
Neural Netw. 2019 Nov;119:200-213. doi: 10.1016/j.neunet.2019.08.002. Epub 2019 Aug 19.
8
Electrical Compartmentalization in Neurons.
Cell Rep. 2019 Feb 12;26(7):1759-1773.e7. doi: 10.1016/j.celrep.2019.01.074.
9
Neural implementation of Bayesian inference in a sensorimotor behavior.
Nat Neurosci. 2018 Oct;21(10):1442-1451. doi: 10.1038/s41593-018-0233-y. Epub 2018 Sep 17.
10
Supralinear and Supramodal Integration of Visual and Tactile Signals in Rats: Psychophysics and Neuronal Mechanisms.
Neuron. 2018 Feb 7;97(3):626-639.e8. doi: 10.1016/j.neuron.2018.01.003. Epub 2018 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验