Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.
Research Institute for Signals, Systems and Computational Intelligence sinc(i), FICH-UNL/CONICET, Santa Fe, Argentina.
Nat Neurosci. 2020 Sep;23(9):1138-1149. doi: 10.1038/s41593-020-0671-1. Epub 2020 Aug 10.
Sensory cortices display a suite of ubiquitous dynamical features, such as ongoing noise variability, transient overshoots and oscillations, that have so far escaped a common, principled theoretical account. We developed a unifying model for these phenomena by training a recurrent excitatory-inhibitory neural circuit model of a visual cortical hypercolumn to perform sampling-based probabilistic inference. The optimized network displayed several key biological properties, including divisive normalization and stimulus-modulated noise variability, inhibition-dominated transients at stimulus onset and strong gamma oscillations. These dynamical features had distinct functional roles in speeding up inferences and made predictions that we confirmed in novel analyses of recordings from awake monkeys. Our results suggest that the basic motifs of cortical dynamics emerge as a consequence of the efficient implementation of the same computational function-fast sampling-based inference-and predict further properties of these motifs that can be tested in future experiments.
感觉皮层表现出一系列普遍存在的动力学特征,例如持续的噪声变异性、瞬态过冲和振荡,这些特征迄今尚未得到一个共同的、有原则的理论解释。我们通过训练一个视觉皮层超柱的递归兴奋性抑制性神经回路模型来进行基于抽样的概率推理,从而为这些现象建立了一个统一的模型。优化后的网络表现出了几个关键的生物学特性,包括:分档归一化和刺激调制的噪声变异性、刺激起始时抑制主导的瞬态以及强的伽马振荡。这些动力学特征在加速推理方面具有独特的功能作用,并做出了我们在对清醒猴子的记录进行新的分析中得到证实的预测。我们的结果表明,皮层动力学的基本模式是有效实现相同计算功能(快速基于抽样的推理)的结果,并预测了这些模式的进一步特性,这些特性可以在未来的实验中得到验证。