Hong Ying, Liu Shiyuan, Yang Xiaodan, Hong Wang, Shan Yao, Wang Biao, Zhang Zhuomin, Yan Xiaodong, Lin Weikang, Li Xuemu, Peng Zehua, Xu Xiaote, Yang Zhengbao
Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
Nat Commun. 2024 Jun 12;15(1):5030. doi: 10.1038/s41467-024-49345-3.
The intriguing biomineralization process in nature endows the mineralized biological materials with intricate microarchitected structures in a facile and orderly way, which provides an inspiration for processing ceramics. Here, we propose a simple and efficient manufacturing process to fabricate cellular ceramics in programmed cell-based 3D configurations, inspired by the biomineralization process of the diatom frustule. Our approach separates the ingredient synthesis from architecture building, enabling the programmable manufacturing of cellular ceramics with various cell sizes, geometries, densities, metastructures, and constituent elements. Our approach exploits surface tension to capture precursor solutions in the architected cellular lattices, allowing us to control the liquid geometry and manufacture cellular ceramics with high precision. We investigate the geometry parameters for the architected lattices assembled by unit cells and unit columns, both theoretically and experimentally, to guide the 3D fluid interface creation in arranged configurations. We manufacture a series of globally cellular and locally compact piezoceramics, obtaining an enhanced piezoelectric constant and a designed piezoelectric anisotropy. This bioinspired, surface tension-assisted approach has the potential to revolutionize the design and processing of multifarious ceramic materials for structural and functional applications in energy, electronics and biomedicine.
自然界中引人入胜的生物矿化过程以一种简便且有序的方式赋予矿化生物材料复杂的微观结构,这为陶瓷加工提供了灵感。在此,受硅藻壳生物矿化过程的启发,我们提出一种简单高效的制造工艺,以基于细胞的三维结构来制造多孔陶瓷。我们的方法将成分合成与结构构建分开,能够对具有各种细胞大小、几何形状、密度、亚结构和组成元素的多孔陶瓷进行可编程制造。我们的方法利用表面张力在构建好的细胞晶格中捕获前驱体溶液,使我们能够控制液体几何形状并高精度制造多孔陶瓷。我们从理论和实验两方面研究了由单元细胞和单元柱组装而成的构建晶格的几何参数,以指导在排列构型中创建三维流体界面。我们制造了一系列整体多孔且局部致密的压电陶瓷,获得了增强的压电常数和设计的压电各向异性。这种受生物启发、表面张力辅助的方法有可能彻底改变用于能源、电子和生物医学领域结构和功能应用的各种陶瓷材料的设计和加工。