Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China.
Cell Death Dis. 2024 Jun 12;15(6):412. doi: 10.1038/s41419-024-06783-7.
Full-length p53 (p53α) plays a pivotal role in maintaining genomic integrity and preventing tumor development. Over the years, p53 was found to exist in various isoforms, which are generated through alternative splicing, alternative initiation of translation, and internal ribosome entry site. p53 isoforms, either C-terminally altered or N-terminally truncated, exhibit distinct biological roles compared to p53α, and have significant implications for tumor development and therapy resistance. Due to a lack of part and/or complete C- or N-terminal domains, ectopic expression of some p53 isoforms failed to induce expression of canonical transcriptional targets of p53α like CDKN1A or MDM2, even though they may bind their promoters. Yet, p53 isoforms like Δ40p53α still activate subsets of targets including MDM2 and BAX. Furthermore, certain p53 isoforms transactivate even novel targets compared to p53α. More recently, non-canonical functions of p53α in DNA repair and of different isoforms in DNA replication unrelated to transcriptional activities were discovered, amplifying the potential of p53 as a master regulator of physiological and tumor suppressor functions in human cells. Both regarding canonical and non-canonical functions, alternative p53 isoforms frequently exert dominant negative effects on p53α and its partners, which is modified by the relative isoform levels. Underlying mechanisms include hetero-oligomerization, changes in subcellular localization, and aggregation. These processes ultimately influence the net activities of p53α and give rise to diverse cellular outcomes. Biological roles of p53 isoforms have implications for tumor development and cancer therapy resistance. Dysregulated expression of isoforms has been observed in various cancer types and is associated with different clinical outcomes. In conclusion, p53 isoforms have expanded our understanding of the complex regulatory network involving p53 in tumors. Unraveling the mechanisms underlying the biological roles of p53 isoforms provides new avenues for studies aiming at a better understanding of tumor development and developing therapeutic interventions to overcome resistance.
全长 p53(p53α)在维持基因组完整性和防止肿瘤发生方面发挥着关键作用。多年来,人们发现 p53 存在多种异构体,这些异构体是通过选择性剪接、翻译起始的选择性和内部核糖体进入位点产生的。与 p53α 相比,p53 异构体,无论是 C 端改变还是 N 端截断,都具有不同的生物学作用,并对肿瘤发生和治疗耐药性具有重要意义。由于缺乏部分和/或完整的 C 端或 N 端结构域,一些 p53 异构体的异位表达未能诱导 p53α 的典型转录靶标,如 CDKN1A 或 MDM2 的表达,尽管它们可能与其启动子结合。然而,像 Δ40p53α 这样的 p53 异构体仍然激活包括 MDM2 和 BAX 在内的靶标子集。此外,与 p53α 相比,某些 p53 异构体还可以转录激活甚至新的靶标。最近,人们发现 p53α 在 DNA 修复中的非典型功能以及不同异构体在与转录活性无关的 DNA 复制中的功能,这增加了 p53 作为人类细胞中生理和肿瘤抑制功能的主要调节剂的潜力。无论是典型功能还是非典型功能,替代的 p53 异构体经常对 p53α 及其伴侣产生显性负效应,这一效应受到相对异构体水平的修饰。潜在的机制包括异源寡聚化、亚细胞定位的改变和聚集。这些过程最终影响 p53α 的净活性,并产生不同的细胞结果。p53 异构体的生物学作用对肿瘤发生和癌症治疗耐药性有影响。在各种癌症类型中观察到异构体的失调表达,并与不同的临床结果相关。总之,p53 异构体扩展了我们对涉及肿瘤中 p53 的复杂调控网络的理解。阐明 p53 异构体的生物学作用的机制为旨在更好地理解肿瘤发生和开发克服耐药性的治疗干预措施的研究提供了新的途径。