Suppr超能文献

用于预测T细胞介导免疫及其他方面的人工智能/机器学习赋能方法。

AI/ML-empowered approaches for predicting T Cell-mediated immunity and beyond.

作者信息

Chao Cheng-Chi, Chiu Yulun, Yeung Lucas, Yee Cassian, Jiang Chongming, Shen Xiling

机构信息

Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States.

ImmuX Consulting, San Jose, CA, United States.

出版信息

Front Immunol. 2025 Aug 29;16:1651533. doi: 10.3389/fimmu.2025.1651533. eCollection 2025.

Abstract

T cells play a dual role in various physiopathological states, capable of eliminating tumors and infected cells, while also playing a pathogenic role when activated by autoantigens, causing self-tissue damage. The regulation of T cell-peptide/major histocompatibility complex (TCR-pMHC) recognition is crucial for maintaining disease balance and treating cancer, infections, and autoimmune diseases. Despite efforts, predictive models of TCR-pMHC specificity are still in the early stages. Inspired by advances in protein structure prediction via deep neural networks, we evaluated AlphaFold 3 (AF3)-based AI computation as a method to predict TCR epitope specificity. We demonstrate that AlphaFold can model TCR-pMHC interactions, distinguishing valid epitopes from invalid ones with increasing accuracy. Immunogenic epitopes can be identified for vaccine development through in silico high-throughput processes. Additionally, higher-affinity and specific T cells can be designed to enhance therapy efficacy and safety. An accurate TCR-pMHC prediction model is expected to greatly benefit T-cell-mediated immunotherapy and aid drug design. Overall, precise prediction of T-cell immunogenicity holds significant therapeutic potential, allowing the identification of peptide epitopes linked to tumors, infections, and autoimmune diseases. Although there is much work to be done before these predictions achieve widespread practical use, we are optimistic that deep learning-based structural modeling is a promising pathway for the generalizable prediction of TCR-pMHC interactions.

摘要

T细胞在多种生理病理状态中发挥双重作用,既能消除肿瘤细胞和受感染细胞,又能在被自身抗原激活时发挥致病作用,导致自身组织损伤。T细胞-肽/主要组织相容性复合体(TCR-pMHC)识别的调节对于维持疾病平衡以及治疗癌症、感染和自身免疫性疾病至关重要。尽管已付出诸多努力,但TCR-pMHC特异性的预测模型仍处于早期阶段。受通过深度神经网络进行蛋白质结构预测进展的启发,我们评估了基于AlphaFold 3(AF3)的人工智能计算作为预测TCR表位特异性的一种方法。我们证明AlphaFold能够模拟TCR-pMHC相互作用,越来越准确地区分有效表位和无效表位。通过计算机高通量流程可为疫苗开发鉴定免疫原性表位。此外,可设计出具有更高亲和力和特异性的T细胞,以提高治疗效果和安全性。一个准确的TCR-pMHC预测模型有望极大地有益于T细胞介导的免疫治疗并辅助药物设计。总体而言,T细胞免疫原性的精确预测具有重大治疗潜力,能够鉴定与肿瘤、感染和自身免疫性疾病相关的肽表位。尽管在这些预测能够广泛实际应用之前还有许多工作要做,但我们乐观地认为基于深度学习的结构建模是TCR-pMHC相互作用通用预测的一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验