Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, México.
Consejo Nacional de Ciencia y Tecnología, Avenida de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México, 03940, México.
World J Microbiol Biotechnol. 2024 Jun 13;40(8):241. doi: 10.1007/s11274-024-04025-8.
Due to the rapid expansion of industrial activity, soil pollution has intensified. Plants growing in these polluted areas have developed a rhizobiome uniquely and specially adapted to thrive in such environments. However, it remains uncertain whether pollution acts as a sufficiently selective force to shape the rhizobiome, and whether these adaptations endure over time, potentially aiding in long-term phytoremediation. Therefore, in the present study, we aimed to compare whether the microbiome associated with roots from plants germinated in polluted riverbanks will improve the phytoremediation of Cd and Pb under mesocosm experiments compared with plants germinating in a greenhouse. The experimental design was a factorial 2 × 2, i.e., the origin of the plant and the presence or absence of 100 mg/L of Cd and 1000 mg/L of Pb. Our results showed that plants germinated in polluted riverbanks have the capacity to accumulate twice the amount of Pb and Cd during mesocosm experiments. The metagenomic analysis showed that plants from the river exposed to heavy metals at the end of mesocosm experiments were rich in Rhizobium sp. AC44/96 and Enterobacter sp. EA-1, Enterobacter soli, Pantoea rwandensis, Pantoea endophytica. In addition, those plants were uniquely associated with Rhizobium grahamii, which likely contributed to the differences in the levels of phytoremediation achieved. Furthermore, the functional analysis revealed an augmented functional potential related to hormones, metallothioneins, dismutases, and reductases; meanwhile, the plants germinated in the greenhouse showed an unspecific strategy to exceed heavy metal stress. In conclusion, pollution pressure drives stable microbial assemblages, which could be used in future phytostabilization and phytoremediation experiments.
由于工业活动的迅速扩张,土壤污染加剧了。在这些受污染地区生长的植物已经发展出一种独特的、专门适应在这种环境中生长的根际微生物组。然而,目前还不清楚污染是否是一种足够的选择力来塑造根际微生物组,以及这些适应是否能随着时间的推移而持续存在,从而可能有助于长期的植物修复。因此,在本研究中,我们旨在比较在中观实验中,与在温室中发芽的植物相比,在受污染河岸发芽的植物的根相关的微生物组是否会改善 Cd 和 Pb 的植物修复。实验设计为因子 2 × 2,即植物的来源和是否存在 100mg/L 的 Cd 和 1000mg/L 的 Pb。我们的结果表明,在中观实验中,在受污染河岸发芽的植物能够积累两倍于 Pb 和 Cd 的量。宏基因组分析表明,在中观实验结束时暴露于重金属的来自河流的植物富含 Rhizobium sp. AC44/96 和 Enterobacter sp. EA-1、Enterobacter soli、Pantoea rwandensis、Pantoea endophytica。此外,这些植物与 Rhizobium grahamii 独特相关,这可能导致了植物修复水平的差异。此外,功能分析显示与激素、金属硫蛋白、歧化酶和还原酶相关的功能潜力增强;与此同时,在温室中发芽的植物表现出一种超越重金属胁迫的非特异性策略。总之,污染压力驱动着稳定的微生物群落,这可以在未来的植物稳定和植物修复实验中得到利用。