Suppr超能文献

用于光学测量与组织学图像相关性的可变形多模态图像配准

Deformable multi-modal image registration for the correlation between optical measurements and histology images.

作者信息

Feenstra Lianne, Lambregts Maud, Ruers Theo J M, Dashtbozorg Behdad

机构信息

Netherlands Cancer Institute, Image-Guided Surgery, Department of Surgical Oncology, Amsterdam, The Netherlands.

University of Twente, Department of Nanobiophysics, Faculty of Science and Technology, Enschede, The Netherlands.

出版信息

J Biomed Opt. 2024 Jun;29(6):066007. doi: 10.1117/1.JBO.29.6.066007. Epub 2024 Jun 12.

Abstract

SIGNIFICANCE

The accurate correlation between optical measurements and pathology relies on precise image registration, often hindered by deformations in histology images. We investigate an automated multi-modal image registration method using deep learning to align breast specimen images with corresponding histology images.

AIM

We aim to explore the effectiveness of an automated image registration technique based on deep learning principles for aligning breast specimen images with histology images acquired through different modalities, addressing challenges posed by intensity variations and structural differences.

APPROACH

Unsupervised and supervised learning approaches, employing the VoxelMorph model, were examined using a dataset featuring manually registered images as ground truth.

RESULTS

Evaluation metrics, including Dice scores and mutual information, demonstrate that the unsupervised model exceeds the supervised (and manual) approaches significantly, achieving superior image alignment. The findings highlight the efficacy of automated registration in enhancing the validation of optical technologies by reducing human errors associated with manual registration processes.

CONCLUSIONS

This automated registration technique offers promising potential to enhance the validation of optical technologies by minimizing human-induced errors and inconsistencies associated with manual image registration processes, thereby improving the accuracy of correlating optical measurements with pathology labels.

摘要

意义

光学测量与病理学之间的准确关联依赖于精确的图像配准,而组织学图像中的变形常常会阻碍这一过程。我们研究了一种使用深度学习的自动多模态图像配准方法,用于将乳腺标本图像与相应的组织学图像对齐。

目的

我们旨在探索一种基于深度学习原理的自动图像配准技术的有效性,该技术用于将乳腺标本图像与通过不同模态获取的组织学图像对齐,解决由强度变化和结构差异带来的挑战。

方法

使用一个以手动配准图像作为基准真值的数据集,对采用VoxelMorph模型的无监督和有监督学习方法进行了研究。

结果

包括骰子系数和互信息在内的评估指标表明,无监督模型显著优于有监督(和手动)方法,实现了更好的图像对齐。研究结果突出了自动配准在通过减少与手动配准过程相关的人为误差来增强光学技术验证方面的功效。

结论

这种自动配准技术具有很大的潜力,可通过最大限度地减少与手动图像配准过程相关的人为误差和不一致性来增强光学技术的验证,从而提高将光学测量与病理学标签相关联的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fb6/11167953/48b688bf21ac/JBO-029-066007-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验