文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过氨介导的氧化银(I)溶解制备用于氨监测的等离子体核/壳纳米棒

Formation of plasmonic core/shell nanorods through ammonia-mediated dissolution of silver(i)oxide for ammonia monitoring.

作者信息

Ghorbanian Elahe, Ghasemi Forough, Tavabe Kamran Rezaei, Alizadeh Sabet Hamid Reza

机构信息

Department of Fisheries, Faculty of Natural Resources, University of Tehran Karaj Iran.

Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO) Karaj Iran

出版信息

Nanoscale Adv. 2024 May 14;6(12):3229-3238. doi: 10.1039/d4na00216d. eCollection 2024 Jun 11.


DOI:10.1039/d4na00216d
PMID:38868819
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11166121/
Abstract

Due to the expansion of the aquaculture industry in the world and the importance of controlling ammonia in fish breeding water, high levels of which impose significant damage to fish farming, it is crucial to develop affordable, rapid, and on-site methods for timely and accurate detection of ammonia. In this study, a colorimetric sensor based on the formation of gold/silver core/shell nanorods (NRs) was developed for the rapid detection of ammonia. The sensor functioned by the specific dissolution of silver(i) oxide by ammonia, which triggered the activation of silver ions and the subsequent formation of gold/silver core/shell NRs in the presence of a reducing agent (, ascorbic acid (AA)). This led to changes in the surface composition, size, and aspect ratio of the NRs, which was accompanied by a vivid color change from green to red/orange in less than a minute. The colorimetric sensor was optimized by adjusting the effective parameters, including ascorbic acid, silver ion, and sodium hydroxide concentration as well as pH and reaction time. After the optimization process, the sensor was found to have a linear range from 50 to 800 μmol L (0.85-13.6 ppm). In addition, the application of the sensor was validated by measuring the ammonia content in water samples from rearing ponds for rainbow trout, sturgeon, and tilapia before and after feeding. The sensor's label-free, rapid, user-friendly, naked-eye, and cost-effective operation makes it an attractive option for on-site environmental monitoring of ammonia.

摘要

由于世界水产养殖业的扩张以及控制鱼类养殖水中氨含量的重要性(氨含量过高会对养鱼业造成重大损害),开发经济实惠、快速且可现场操作的方法以及时准确检测氨至关重要。在本研究中,开发了一种基于金/银核壳纳米棒(NRs)形成的比色传感器用于快速检测氨。该传感器的工作原理是氨使氧化银(I)发生特定溶解,从而触发银离子的活化,并在还原剂(如抗坏血酸(AA))存在的情况下随后形成金/银核壳纳米棒。这导致纳米棒的表面组成、尺寸和纵横比发生变化,同时在不到一分钟的时间内伴随着从绿色到红色/橙色的明显颜色变化。通过调整有效参数(包括抗坏血酸、银离子和氢氧化钠浓度以及pH和反应时间)对该比色传感器进行了优化。优化过程后,发现该传感器的线性范围为50至800 μmol L(0.85 - 13.6 ppm)。此外,通过测量虹鳟鱼、鲟鱼和罗非鱼养殖池塘水样投喂前后的氨含量,验证了该传感器的应用。该传感器无需标记、快速、用户友好、可肉眼观察且成本效益高的操作使其成为现场氨环境监测的有吸引力的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/0a8f4b17355b/d4na00216d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/ce11f776e02c/d4na00216d-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/fb17318f44db/d4na00216d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/f8aa9b169639/d4na00216d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/ec22b0ae46c3/d4na00216d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/5d4a8b591bc8/d4na00216d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/451ea8a105c9/d4na00216d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/0a8f4b17355b/d4na00216d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/ce11f776e02c/d4na00216d-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/fb17318f44db/d4na00216d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/f8aa9b169639/d4na00216d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/ec22b0ae46c3/d4na00216d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/5d4a8b591bc8/d4na00216d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/451ea8a105c9/d4na00216d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fc/11166121/0a8f4b17355b/d4na00216d-f6.jpg

相似文献

[1]
Formation of plasmonic core/shell nanorods through ammonia-mediated dissolution of silver(i)oxide for ammonia monitoring.

Nanoscale Adv. 2024-5-14

[2]
Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.

J Vis Exp. 2023-5-26

[3]
New application of a traditional method: colorimetric sensor array for reducing sugars based on the in-situ formation of core-shell gold nanorod-coated silver nanoparticles by the traditional Tollens reaction.

Mikrochim Acta. 2021-3-28

[4]
Self-Assembled Plasmonic Structural Color Colorimetric Sensor for Smartphone-Based Point-Of-Care Ammonia Detection in Water.

ACS Appl Mater Interfaces. 2024-8-28

[5]
Highly sensitive visual colorimetric sensor for trichlorfon detection based on the inhibition of metallization of gold nanorods.

Spectrochim Acta A Mol Biomol Spectrosc. 2022-4-5

[6]
Providing Multicolor Plasmonic Patterns with Au@Ag Core-Shell Nanostructures for Visual Discrimination of Biogenic Amines.

ACS Appl Mater Interfaces. 2021-5-5

[7]
High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod.

ACS Appl Mater Interfaces. 2014-10-2

[8]
A Flexible and Attachable Colorimetric Film Sensor for the Detection of Gaseous Ammonia.

Biosensors (Basel). 2022-8-21

[9]
Highly sensitive and selective visual detection of Cr(VI) ions based on etching of silver-coated gold nanorods.

Nano Converg. 2019-10-23

[10]
Formation of plasmonic silver nanoparticles by glucosamine reduction: Application to a colorimetric sensor for determination of glucosamine in its pharmaceutical preparations.

J Pharm Biomed Anal. 2023-11-30

引用本文的文献

[1]
Iron(III) edta-accelerated growth of gold/silver core/shell nanoparticles for wide-range colorimetric detection of hydrogen peroxide.

Sci Rep. 2025-2-3

本文引用的文献

[1]
Machine Learning-Assisted Colorimetric Assay Based on Au@Ag Nanorods for Chromium Speciation.

Anal Chem. 2023-7-4

[2]
Paper-based optical nanosensors - A review.

Anal Chim Acta. 2023-1-15

[3]
Analyte-restrained silver coating of gold nanostructures: an efficient strategy to advance multicolorimetric probes.

Nanotechnology. 2021-11-24

[4]
Thiol-mediated etching of gold nanorods as a neoteric strategy for room-temperature and multicolor detection of nitrite and nitrate.

Anal Methods. 2021-10-8

[5]
Improving water quality does not guarantee fish health: Effects of ammonia pollution on the behaviour of wild-caught pre-exposed fish.

PLoS One. 2021

[6]
Simultaneous detection and identification of thiometon, phosalone, and prothioconazole pesticides using a nanoplasmonic sensor array.

Food Chem Toxicol. 2021-5

[7]
Plasmonic nanoparticles for colorimetric detection of nitrite and nitrate.

Food Chem Toxicol. 2021-3

[8]
Nanoplasmonic sensor array for the detection and discrimination of pesticide residues in citrus fruits.

Anal Methods. 2020-12-23

[9]
Selective colorimetric detection of pentaerythritol tetranitrate (PETN) using arginine-mediated aggregation of gold nanoparticles.

Spectrochim Acta A Mol Biomol Spectrosc. 2019-11-16

[10]
Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications.

Nanomaterials (Basel). 2019-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索