Suppr超能文献

基于深度学习的活体肝供体CT血管造影综合评估:从血管分割到容积分析。

Comprehensive deep learning-based assessment of living liver donor CT angiography: from vascular segmentation to volumetric analysis.

作者信息

Oh Namkee, Kim Jae-Hun, Rhu Jinsoo, Jeong Woo Kyoung, Choi Gyu-Seong, Kim Jongman, Joh Jae-Won

机构信息

Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul.

Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

出版信息

Int J Surg. 2024 Oct 1;110(10):6551-6557. doi: 10.1097/JS9.0000000000001829.

Abstract

BACKGROUND

Precise preoperative assessment of liver vasculature and volume in living donor liver transplantation is essential for donor safety and recipient surgery. Traditional manual segmentation methods are being supplemented by deep learning (DL) models, which may offer more consistent and efficient volumetric evaluations.

METHODS

This study analyzed living liver donors from Samsung Medical Center using preoperative CT angiography data between April 2022 and February 2023. A DL-based 3D residual U-Net model was developed and trained on segmented CT images to calculate the liver volume and segment vasculature, with its performance compared to traditional manual segmentation by surgeons and actual graft weight.

RESULTS

The DL model achieved high concordance with manual methods, exhibiting Dice Similarity Coefficients of 0.94±0.01 for the right lobe and 0.91±0.02 for the left lobe. The liver volume estimates by DL model closely matched those of surgeons, with a mean discrepancy of 9.18 ml, and correlated more strongly with actual graft weights (R-squared value of 0.76 compared to 0.68 for surgeons).

CONCLUSION

The DL model demonstrates potential as a reliable tool for enhancing preoperative planning in liver transplantation, offering consistency and efficiency in volumetric assessment. Further validation is required to establish its generalizability across various clinical settings and imaging protocols.

摘要

背景

在活体肝移植中,精确的术前肝脏血管系统和体积评估对于供体安全和受体手术至关重要。传统的手动分割方法正得到深度学习(DL)模型的补充,DL模型可能会提供更一致、高效的体积评估。

方法

本研究分析了三星医疗中心在2022年4月至2023年2月期间使用术前CT血管造影数据的活体肝供体。开发了一种基于DL的3D残差U-Net模型,并在分割后的CT图像上进行训练,以计算肝脏体积和各段血管系统,将其性能与外科医生的传统手动分割以及实际移植肝重量进行比较。

结果

DL模型与手动方法具有高度一致性,右叶的骰子相似系数为0.94±0.01,左叶为0.91±0.02。DL模型估计的肝脏体积与外科医生的估计值非常接近,平均差异为9.18毫升,并且与实际移植肝重量的相关性更强(决定系数为0.76,而外科医生为0.68)。

结论

DL模型显示出作为增强肝移植术前规划的可靠工具的潜力,在体积评估中提供了一致性和效率。需要进一步验证以确定其在各种临床环境和成像方案中的通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47ee/11487025/d1ec8705d5d2/js9-110-6551-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验