IEEE J Biomed Health Inform. 2021 Jun;25(6):1904-1914. doi: 10.1109/JBHI.2020.3035191. Epub 2021 Jun 3.
This paper presents a resource-saving system to extract a few important features of electrocardiogram (ECG) signals. In addition, real-time classifiers are proposed as well to classify different types of arrhythmias via these features. The proposed feature extraction system is based on two delta-sigma modulators adopting 250 Hz sampling rate and three wave detection algorithms to analyze outputs of the modulators. It extracts essential details of each heartbeat, and the details are encoded into 68 bits data that is only 1.48% of the other comparable methods. To evaluate our classification, we use a novel patient-specific training protocol in conjunction with the MIT-BIH database and the recommendation of the AAMI to train the classifiers. The classifiers are random forests that are designed to recognize two major types of arrhythmias. They are supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB). The performance of the arrhythmia classification reaches to the F1 scores of 81.05% for SVEB and 97.07% for VEB, which are also comparable to the state-of-the-art methods. The method provides a reliable and accurate approach to analyze ECG signals. Additionally, it also possesses time-efficient, low-complexity, and low-memory-usage advantages. Benefiting from these advantages, the method can be applied to practical ECG applications, especially wearable healthcare devices and implanted medical devices, for wave detection and arrhythmia classification.
本文提出了一种节能的系统,用于提取心电图(ECG)信号的一些重要特征。此外,还提出了实时分类器,通过这些特征来对不同类型的心律失常进行分类。所提出的特征提取系统基于两个采用 250 Hz 采样率的 delta-sigma 调制器和三个波检测算法,用于分析调制器的输出。它提取每个心跳的重要细节,细节被编码为 68 位数据,仅为其他可比方法的 1.48%。为了评估我们的分类,我们使用了一种新的基于患者的训练协议,结合 MIT-BIH 数据库和 AAMI 的建议来训练分类器。分类器是随机森林,旨在识别两种主要类型的心律失常,即室上性异位搏动(SVEB)和室性异位搏动(VEB)。心律失常分类的性能达到 SVEB 的 F1 得分为 81.05%,VEB 的 F1 得分为 97.07%,与最先进的方法相当。该方法为分析 ECG 信号提供了一种可靠而准确的方法。此外,它还具有高效、低复杂度和低内存使用的优点。得益于这些优势,该方法可应用于实际的 ECG 应用,特别是可穿戴式医疗设备和植入式医疗设备,用于波检测和心律失常分类。