文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 mRNA、small RNA 和降解组测序揭示决定高粱抗旱耐盐性的关键机制。

Revealing critical mechanisms in determining sorghum resistance to drought and salt using mRNA, small RNA and degradome sequencing.

机构信息

Department of Brewing Engineering, Moutai Institute, Renhuai, 564507, Guizhou, China.

Department of Resources and Environment, Moutai Institute, Renhuai, 564507, Guizhou, China.

出版信息

BMC Plant Biol. 2024 Jun 13;24(1):547. doi: 10.1186/s12870-024-05230-1.


DOI:10.1186/s12870-024-05230-1
PMID:38872092
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11177356/
Abstract

BACKGROUND: Plant growth and development are severely threatened by drought and salt stresses. Compared with structural genes, transcription factors (TFs) play more pivotal roles in plant growth and stress adaptation. However, the underlying mechanisms of sorghum adapting to drought and salt are insufficient, and systematic analysis of TFs in response to the above stresses is lacking. RESULTS: In this study, TFs were identified in sorghum and model plants (Arabidopsis thaliana and rice), and gene number and conserved domain were compared between sorghum and model plants. According to syntenic analysis, the expansion of sorghum and rice TFs may be due to whole-genome duplications. Between sorghum and model plants TFs, specific conserved domains were identified and they may be related to functional diversification of TFs. Forty-five key genes in sorghum, including four TFs, were likely responsible for drought adaption based on differently expression analysis. MiR5072 and its target gene (Sobic.001G449600) may refer to the determination of sorghum drought resistance according to small RNA and degradome analysis. Six genes were associated with drought adaptation of sorghum based on weighted gene co-expression network analysis (WGCNA). Similarly, the core genes in response to salt were also characterized using the above methods. Finally, 15 candidate genes, particularly two TFs (Sobic.004G300300, HD-ZIP; Sobic.003G244100, bZIP), involved in combined drought and salt resistance of sorghum were identified. CONCLUSIONS: In summary, the findings in this study help clarify the molecular mechanisms of sorghum responding to drought and salt. We identified candidate genes and provide important genetic resource for potential development of drought-tolerant and salt-tolerant sorghum plants.

摘要

背景:植物的生长和发育受到干旱和盐胁迫的严重威胁。与结构基因相比,转录因子(TFs)在植物的生长和应激适应中发挥着更为关键的作用。然而,高粱适应干旱和盐胁迫的潜在机制尚不清楚,且缺乏针对上述胁迫下 TFs 的系统分析。

结果:本研究在高粱和模式植物(拟南芥和水稻)中鉴定了 TFs,并比较了高粱和模式植物之间的基因数量和保守结构域。根据共线性分析,高粱和水稻 TFs 的扩张可能是由于全基因组加倍所致。在高粱和模式植物 TFs 之间,鉴定到了特定的保守结构域,它们可能与 TFs 功能多样化有关。基于差异表达分析,从高粱中鉴定出包括四个 TFs 在内的 45 个关键基因,这些基因可能与高粱的耐旱性有关。根据小 RNA 和降解组分析,miR5072 及其靶基因(Sobic.001G449600)可能决定了高粱的抗旱性。基于加权基因共表达网络分析(WGCNA),有 6 个基因与高粱的耐旱性有关。同样,利用上述方法也对响应盐胁迫的核心基因进行了特征描述。最后,鉴定出 15 个候选基因,特别是两个 TFs(Sobic.004G300300,HD-ZIP;Sobic.003G244100,bZIP),它们可能参与高粱的抗旱耐盐性。

结论:综上所述,本研究的结果有助于阐明高粱响应干旱和盐胁迫的分子机制。我们鉴定了候选基因,为高粱耐旱耐盐品种的潜在开发提供了重要的遗传资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/4e68a71d2829/12870_2024_5230_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/ab920dc39f0c/12870_2024_5230_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/c1c4e93f2eda/12870_2024_5230_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/c2311a6234c4/12870_2024_5230_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/07e08d2c6a03/12870_2024_5230_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/23ed8774b4e6/12870_2024_5230_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/181ddcb5f483/12870_2024_5230_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/e421c8c6f0d5/12870_2024_5230_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/f7aeae04ba79/12870_2024_5230_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/002cf263fcf6/12870_2024_5230_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/0f3190f0e5f7/12870_2024_5230_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/4e68a71d2829/12870_2024_5230_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/ab920dc39f0c/12870_2024_5230_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/c1c4e93f2eda/12870_2024_5230_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/c2311a6234c4/12870_2024_5230_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/07e08d2c6a03/12870_2024_5230_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/23ed8774b4e6/12870_2024_5230_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/181ddcb5f483/12870_2024_5230_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/e421c8c6f0d5/12870_2024_5230_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/f7aeae04ba79/12870_2024_5230_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/002cf263fcf6/12870_2024_5230_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/0f3190f0e5f7/12870_2024_5230_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc66/11177356/4e68a71d2829/12870_2024_5230_Fig11_HTML.jpg

相似文献

[1]
Revealing critical mechanisms in determining sorghum resistance to drought and salt using mRNA, small RNA and degradome sequencing.

BMC Plant Biol. 2024-6-13

[2]
Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype.

Plant Mol Biol. 2017-1

[3]
Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance.

BMC Genomics. 2018-1-12

[4]
Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.

PLoS One. 2018-3-28

[5]
SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum.

J Plant Physiol. 2020-2-22

[6]
A Comprehensive Gene Co-Expression Network Analysis Reveals a Role of in Responding to Drought and Salt Stresses.

Int J Mol Sci. 2022-10-12

[7]
Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.

Genes (Basel). 2019-9-30

[8]
Ectopic Overexpression of Pineapple Transcription Factor AcWRKY31 Reduces Drought and Salt Tolerance in Rice and .

Int J Mol Sci. 2022-6-3

[9]
Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid.

BMC Genomics. 2011-10-18

[10]
Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress.

BMC Genomics. 2014-6-10

本文引用的文献

[1]
Molecular switches in plant stress adaptation.

Mol Biol Rep. 2023-12-18

[2]
The apple autophagy-related gene MdATG10 improves drought tolerance and water use efficiency in transgenic apple plants.

Plant Physiol Biochem. 2024-1

[3]
Advances in the Study of the Transcriptional Regulation Mechanism of Plant miRNAs.

Life (Basel). 2023-9-15

[4]
Abscisic acid priming confers salt tolerance in maize seedlings by modulating osmotic adjustment, bond energies, ROS homeostasis, and organic acid metabolism.

Plant Physiol Biochem. 2023-9

[5]
Physiological and Transcriptional Analyses Provide Insight into Maintaining Ion Homeostasis of Sweet Sorghum under Salt Stress.

Int J Mol Sci. 2023-7-3

[6]
Genome-wide identification of Brassicaceae histone modification genes and their responses to abiotic stresses in allotetraploid rapeseed.

BMC Plant Biol. 2023-5-11

[7]
A Gγ protein regulates alkaline sensitivity in crops.

Science. 2023-3-24

[8]
Field performance of sweet sorghum in salt-affected soils in China: A quantitative synthesis.

Environ Res. 2023-4-1

[9]
Low iron ameliorates the salinity-induced growth cessation of seminal roots in wheat seedlings.

Plant Cell Environ. 2023-2

[10]
Genome-Wide Identification of Brassicaceae Hormone-Related Transcription Factors and Their Roles in Stress Adaptation and Plant Height Regulation in Allotetraploid Rapeseed.

Int J Mol Sci. 2022-8-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索