Division of Radiology, Wuming Hospital of Guangxi Medical University, Nanning, China.
Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Curr Med Imaging. 2024;20:e15734056302538. doi: 10.2174/0115734056302538240522110059.
Radiomics can quantify pulmonary nodule characteristics non-invasively by applying advanced imaging feature algorithms. Radiomic textural features derived from Computed Tomography (CT) imaging are broadly used to predict benign and malignant pulmonary nodules. However, few studies have reported on the radiomics-based identification of nodular Pulmonary Cryptococcosis (PC).
This study aimed to evaluate the diagnostic and differential diagnostic value of radiomic features extracted from CT images for nodular PC.
This retrospective analysis included 44 patients with PC (29 males, 15 females), 58 with Tuberculosis (TB) (39 males, 19 females), and 60 with Lung Cancer (LC) (20 males, 40 females) confirmed pathologically. Models 1 (PC vs. non-PC), 2 (PC vs. TB), and 3 (PC vs. LC) were established using radiomic features. Models 4 (PC vs. TB) and 5 (PC vs. LC) were established based on radiomic and CT features.
Five radiomic features were predictive of PC vs. non-PC model, but accuracy and Area Under the Curve (AUC) were 0.49 and 0.472, respectively. In model 2 (PC vs. TB) involving six radiomic features, the accuracy and AUC were 0.80 and 0.815, respectively. Model 3 (PC vs. LC) with six radiomic features performed well, with AUC=0.806 and an accuracy of 0.76. Between the PC and TB groups, model 4 combining radiomics, distribution, and PI, showed AUC=0.870. In differentiating PC from LC, the combination of radiomics, distribution, PI, and RBNAV achieved AUC=0.926 and an accuracy of 0.90.
The prediction models based on radiomic features from CT images performed well in discriminating PC from TB and LC. The individualized prediction models combining radiomic and CT features achieved the best diagnostic performance.
放射组学可以通过应用先进的成像特征算法,无创地量化肺结节特征。从计算机断层扫描(CT)图像中提取的放射组学纹理特征广泛用于预测良恶性肺结节。然而,很少有研究报道基于放射组学的肺隐球菌病(PC)结节的识别。
本研究旨在评估从 CT 图像中提取的放射组学特征对肺隐球菌病结节的诊断和鉴别诊断价值。
本回顾性分析纳入了 44 例经病理证实的肺隐球菌病患者(29 名男性,15 名女性)、58 例肺结核(TB)患者(39 名男性,19 名女性)和 60 例肺癌(LC)患者(20 名男性,40 名女性)。使用放射组学特征建立模型 1(PC 与非 PC)、模型 2(PC 与 TB)和模型 3(PC 与 LC)。基于放射组学和 CT 特征建立模型 4(PC 与 TB)和模型 5(PC 与 LC)。
有 5 个放射组学特征可预测 PC 与非 PC 模型,但准确性和曲线下面积(AUC)分别为 0.49 和 0.472。在涉及 6 个放射组学特征的模型 2(PC 与 TB)中,准确性和 AUC 分别为 0.80 和 0.815。在涉及 6 个放射组学特征的模型 3(PC 与 LC)中,表现良好,AUC=0.806,准确性为 0.76。在 PC 与 TB 组之间,结合放射组学、分布和 PI 的模型 4 显示 AUC=0.870。在区分 PC 与 LC 时,结合放射组学、分布、PI 和 RBNAV 的模型达到 AUC=0.926 和准确性为 0.90。
基于 CT 图像放射组学特征的预测模型在鉴别 PC 与 TB 和 LC 方面表现良好。结合放射组学和 CT 特征的个体化预测模型达到了最佳诊断性能。