Suppr超能文献

基于 CT 图像提取的纹理特征对肺隐球菌病结节的诊断研究。

Diagnostic Study of Nodular Pulmonary Cryptococcosis Based on Radiomic Features Captured from CT Images.

机构信息

Division of Radiology, Wuming Hospital of Guangxi Medical University, Nanning, China.

Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.

出版信息

Curr Med Imaging. 2024;20:e15734056302538. doi: 10.2174/0115734056302538240522110059.

Abstract

BACKGROUND

Radiomics can quantify pulmonary nodule characteristics non-invasively by applying advanced imaging feature algorithms. Radiomic textural features derived from Computed Tomography (CT) imaging are broadly used to predict benign and malignant pulmonary nodules. However, few studies have reported on the radiomics-based identification of nodular Pulmonary Cryptococcosis (PC).

OBJECTIVE

This study aimed to evaluate the diagnostic and differential diagnostic value of radiomic features extracted from CT images for nodular PC.

METHODS

This retrospective analysis included 44 patients with PC (29 males, 15 females), 58 with Tuberculosis (TB) (39 males, 19 females), and 60 with Lung Cancer (LC) (20 males, 40 females) confirmed pathologically. Models 1 (PC vs. non-PC), 2 (PC vs. TB), and 3 (PC vs. LC) were established using radiomic features. Models 4 (PC vs. TB) and 5 (PC vs. LC) were established based on radiomic and CT features.

RESULTS

Five radiomic features were predictive of PC vs. non-PC model, but accuracy and Area Under the Curve (AUC) were 0.49 and 0.472, respectively. In model 2 (PC vs. TB) involving six radiomic features, the accuracy and AUC were 0.80 and 0.815, respectively. Model 3 (PC vs. LC) with six radiomic features performed well, with AUC=0.806 and an accuracy of 0.76. Between the PC and TB groups, model 4 combining radiomics, distribution, and PI, showed AUC=0.870. In differentiating PC from LC, the combination of radiomics, distribution, PI, and RBNAV achieved AUC=0.926 and an accuracy of 0.90.

CONCLUSION

The prediction models based on radiomic features from CT images performed well in discriminating PC from TB and LC. The individualized prediction models combining radiomic and CT features achieved the best diagnostic performance.

摘要

背景

放射组学可以通过应用先进的成像特征算法,无创地量化肺结节特征。从计算机断层扫描(CT)图像中提取的放射组学纹理特征广泛用于预测良恶性肺结节。然而,很少有研究报道基于放射组学的肺隐球菌病(PC)结节的识别。

目的

本研究旨在评估从 CT 图像中提取的放射组学特征对肺隐球菌病结节的诊断和鉴别诊断价值。

方法

本回顾性分析纳入了 44 例经病理证实的肺隐球菌病患者(29 名男性,15 名女性)、58 例肺结核(TB)患者(39 名男性,19 名女性)和 60 例肺癌(LC)患者(20 名男性,40 名女性)。使用放射组学特征建立模型 1(PC 与非 PC)、模型 2(PC 与 TB)和模型 3(PC 与 LC)。基于放射组学和 CT 特征建立模型 4(PC 与 TB)和模型 5(PC 与 LC)。

结果

有 5 个放射组学特征可预测 PC 与非 PC 模型,但准确性和曲线下面积(AUC)分别为 0.49 和 0.472。在涉及 6 个放射组学特征的模型 2(PC 与 TB)中,准确性和 AUC 分别为 0.80 和 0.815。在涉及 6 个放射组学特征的模型 3(PC 与 LC)中,表现良好,AUC=0.806,准确性为 0.76。在 PC 与 TB 组之间,结合放射组学、分布和 PI 的模型 4 显示 AUC=0.870。在区分 PC 与 LC 时,结合放射组学、分布、PI 和 RBNAV 的模型达到 AUC=0.926 和准确性为 0.90。

结论

基于 CT 图像放射组学特征的预测模型在鉴别 PC 与 TB 和 LC 方面表现良好。结合放射组学和 CT 特征的个体化预测模型达到了最佳诊断性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验