Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan, China.
Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
Plant Mol Biol. 2024 Jun 15;114(4):75. doi: 10.1007/s11103-024-01470-9.
Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.
非生物胁迫的长期暴露会导致氧化应激,从而影响植物的发育和生存。在这项研究中,ZmARF1 的过表达提高了对低磷、干旱和盐胁迫的耐受性。与野生型(WT)植物相比,转基因植物表现出对低磷的耐受性,其表型根特征更为优越:根长、根尖、根表面积和根体积。此外,在低磷条件下,转基因植物表现出更高的根和叶磷含量,并上调了高亲和力磷转运蛋白 PHT1;2 和磷饥饿诱导(PSI)基因 PHO2 和 PHR1。转基因拟南芥通过维持更高的叶绿素含量和叶绿素荧光、更低的水分损失率和离子泄漏率来耐受干旱和盐胁迫,这有助于过表达系比 WT 系的存活。转录组分析鉴定了一个过氧化物酶基因 POX,其转录本受到这些非生物胁迫的上调。此外,我们证实 ZmARF1 结合到 POX 启动子中的生长素反应元件(AuxRE),并增强其转录,以介导转基因幼苗对低磷、干旱和盐胁迫引起的氧化应激的耐受性。这些结果表明,ZmARF1 具有显著提高作物对多种非生物胁迫耐受性的潜力。