Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.
Cell Death Dis. 2024 Jun 15;15(6):418. doi: 10.1038/s41419-024-06814-3.
Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER + ) breast cancer, constituting around 75% of all cases. However, the emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance by blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of the cAMP/PKA/CREB axis and increased expression of the TRPC1 Ca channel. This causes cytosolic Ca overload and generation of reactive oxygen species (ROS) that is, on the one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels, in part by cAMP/CREB. These ultimately restore tamoxifen-dependent lipid peroxidation and ferroptotic cell death which are reversed upon chelating Ca or overexpressing GPX4 or xCT. Overexpressing PDE4D reverses LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of tamoxifen sensitization via restoring tamoxifen-dependent ferroptosis upon destabilizing PDE4D, increasing cAMP and Ca levels, thus leading to ROS generation and lipid peroxidation. Our findings reveal LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.
他莫昔芬一直是治疗早期、局部晚期和转移性雌激素受体阳性(ER+)乳腺癌的主要治疗方法,占所有病例的 75%左右。然而,耐药性的出现很常见,需要确定新的治疗靶点。在这里,我们证明长非编码 RNA LINC00152 通过阻断他莫昔芬诱导的铁死亡来赋予他莫昔芬耐药性,铁死亡是一种铁介导的细胞死亡。在机制上,抑制 LINC00152 会降低磷酸二酯酶 4D(PDE4D)的 mRNA 稳定性,导致 cAMP/PKA/CREB 轴的激活和 TRPC1 Ca 通道的表达增加。这会导致细胞溶质 Ca 超载和活性氧(ROS)的产生,一方面伴随着铁螯合单元的成员 FTH1 的下调,从而增加细胞内 Fe 水平;另一方面,通过降低 GPX4 和 xCT 水平来抑制过氧化物酶活性,部分原因是 cAMP/CREB。这些最终恢复了他莫昔芬依赖性的脂质过氧化和铁死亡,而铁死亡可以通过螯合 Ca 或过表达 GPX4 或 xCT 来逆转。过表达 PDE4D 通过去激活 cAMP/Ca/铁死亡轴来逆转 LINC00152 抑制介导的他莫昔芬增敏作用。重要的是,在多个他莫昔芬或包含他莫昔芬的内分泌治疗治疗的 ER+乳腺癌患者队列中,高 LINC00152 表达与高 PDE4D/低铁死亡和更差的生存显著相关。总的来说,我们确定了 LINC00152 抑制作为一种通过稳定 PDE4D、增加 cAMP 和 Ca 水平来恢复他莫昔芬依赖性铁死亡的新型他莫昔芬增敏机制,从而导致 ROS 生成和脂质过氧化。我们的研究结果表明,LINC00152 及其效应物可作为治疗靶点,以改善难治性 ER+乳腺癌的临床结局。
Cochrane Database Syst Rev. 2009-10-7
Front Biosci (Landmark Ed). 2025-6-27
J Cancer Res Clin Oncol. 2023-12
Health Technol Assess. 2007-7
BMC Biol. 2025-6-6
Eur J Breast Health. 2025-3-25
Front Cell Dev Biol. 2024-12-23
Front Immunol. 2024-11-27
Int J Mol Sci. 2023-5-19
Br J Cancer. 2023-2
Drug Resist Updat. 2023-1
Cell Death Differ. 2022-6
Cell Death Differ. 2022-3