Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
Hong Kong Eye Hospital, Hong Kong, Hong Kong.
Eye (Lond). 2021 Jan;35(1):188-201. doi: 10.1038/s41433-020-01191-5. Epub 2020 Oct 7.
Deep learning (DL), a subset of artificial intelligence (AI) based on deep neural networks, has made significant breakthroughs in medical imaging, particularly for image classification and pattern recognition. In ophthalmology, applying DL for glaucoma assessment with optical coherence tomography (OCT), including OCT traditional reports, two-dimensional (2D) B-scans, and three-dimensional (3D) volumetric scans, has increasingly raised research interests. Studies have demonstrated that using DL for interpreting OCT is efficient, accurate, and with good performance for discriminating glaucomatous eyes from normal eyes, suggesting that incorporation of DL technology in OCT for glaucoma assessment could potentially address some gaps in the current practice and clinical workflow. However, further research is crucial in tackling some existing challenges, such as annotation standardization (i.e., setting a standard for ground truth labelling among different studies), development of DL-powered IT infrastructure for real-world implementation, prospective validation in unseen datasets for further evaluation of generalizability, cost-effectiveness analysis after integration of DL, the AI "black box" explanation problem. This review summarizes recent studies on the application of DL on OCT for glaucoma assessment, identifies the potential clinical impact arising from the development and deployment of the DL models, and discusses future research directions.
深度学习(DL)是人工智能(AI)的一个分支,基于深度神经网络,在医学成像领域取得了重大突破,特别是在图像分类和模式识别方面。在眼科学中,应用 DL 对光学相干断层扫描(OCT)进行青光眼评估,包括 OCT 传统报告、二维(2D)B 扫描和三维(3D)容积扫描,越来越引起研究兴趣。研究表明,使用 DL 来解释 OCT 是高效、准确的,并且在区分正常眼和青光眼眼中具有良好的性能,这表明将 DL 技术纳入 OCT 进行青光眼评估可能会解决当前实践和临床工作流程中的一些差距。然而,在解决一些现有挑战方面,进一步的研究至关重要,例如注释标准化(即在不同研究中设置地面实况标记的标准)、为实际应用开发基于 DL 的 IT 基础设施、在未见数据集上进行前瞻性验证以进一步评估泛化能力、整合 DL 后的成本效益分析、AI“黑盒”解释问题。本文综述了 DL 在 OCT 青光眼评估中的应用研究,确定了 DL 模型的开发和部署所带来的潜在临床影响,并讨论了未来的研究方向。