Suppr超能文献

利用机器学习提高无保护左主干病变冠状动脉搭桥患者的术后风险评估:一项回顾性队列研究

Leveraging machine learning to enhance postoperative risk assessment in coronary artery bypass grafting patients with unprotected left main disease: a retrospective cohort study.

作者信息

Elmahrouk Ahmed, Daoulah Amin, Panduranga Prashanth, Rajan Rajesh, Jamjoom Ahmed, Kanbr Omar, Alzahrani Badr, Qutub Mohammed A, Yousif Nooraldaem, Chachar Tarique Shahzad, Elmahrouk Youssef, Alshehri Ali, Hassan Taher, Tawfik Wael, Haider Kamel Hazaa, Abohasan Abdulwali, Alqublan Adel N, Alqahtani Abdulrahman M, Ghani Mohamed Ajaz, Al Nasser Faisal Omar M, Almahmeed Wael, Ghonim Ahmed A, Hashmani Shahrukh, Alshehri Mohammed, Elganady Abdelmaksoud, Shawky Abeer M, Fathey Hussien Adnan, Abualnaja Seraj, Noor Taha H, Abdulhabeeb Ibrahim A M, Ozdemir Levent, Refaat Wael, Kazim Hameedullah M, Selim Ehab, Altnji Issam, Ibrahim Ahmed M, Alquaid Abdullah, Arafat Amr A

机构信息

Department of Cardiovascular Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia.

Department of Cardiothoracic Surgery, Faculty of Medicine, Tanta University, Egypt.

出版信息

Int J Surg. 2024 Nov 1;110(11):7142-7149. doi: 10.1097/JS9.0000000000002032.

Abstract

BACKGROUND

Risk stratification for patients undergoing coronary artery bypass surgery (CABG) for left main coronary artery (LMCA) disease is essential for informed decision-making. This study explored the potential of machine learning (ML) methods to identify key risk factors associated with mortality in this patient group.

METHODS

This retrospective cohort study was conducted on 866 patients from the Gulf Left Main Registry who presented between 2015 and 2019. The study outcome was hospital all-cause mortality. Various machine learning models [logistic regression, random forest (RF), k-nearest neighbor, support vector machine, naïve Bayes, multilayer perception, boosting] were used to predict mortality, and their performance was measured using accuracy, precision, recall, F1 score, and area under the receiver operator characteristic curve (AUC).

RESULTS

Nonsurvivors had significantly greater EuroSCORE II values (1.84 (10.08-3.67) vs. 4.75 (2.54-9.53) %, P <0.001 for survivors and nonsurvivors, respectively). The EuroSCORE II score significantly predicted hospital mortality (OR: 1.13 (95% CI: 1.09-1.18), P <0.001), with an AUC of 0.736. RF achieved the best ML performance (accuracy=98, precision=100, recall=97, and F1 score=98). Explainable artificial intelligence using SHAP demonstrated the most important features as follows: preoperative lactate level, emergency surgery, chronic kidney disease (CKD), NSTEMI, nonsmoking status, and sex. QLattice identified lactate and CKD as the most important factors for predicting hospital mortality this patient group.

CONCLUSION

This study demonstrates the potential of ML, particularly the Random Forest, to accurately predict hospital mortality in patients undergoing CABG for LMCA disease and its superiority over traditional methods. The key risk factors identified, including preoperative lactate levels, emergency surgery, chronic kidney disease, NSTEMI, nonsmoking status, and sex, provide valuable insights for risk stratification and informed decision-making in this high-risk patient population. Additionally, incorporating newly identified risk factors into future risk-scoring systems can further improve mortality prediction accuracy.

摘要

背景

对于因左主干冠状动脉(LMCA)疾病接受冠状动脉旁路移植术(CABG)的患者进行风险分层,对于做出明智的决策至关重要。本研究探讨了机器学习(ML)方法识别该患者群体中与死亡率相关的关键风险因素的潜力。

方法

本回顾性队列研究对2015年至2019年间来自海湾左主干登记处的866例患者进行。研究结局为医院全因死亡率。使用各种机器学习模型[逻辑回归、随机森林(RF)、k近邻、支持向量机、朴素贝叶斯、多层感知器、提升算法]预测死亡率,并使用准确率、精确率、召回率、F1分数和受试者工作特征曲线下面积(AUC)来衡量其性能。

结果

非幸存者的欧洲心脏手术风险评估系统(EuroSCORE)II值显著更高(幸存者为1.84(10.08 - 3.67),非幸存者为4.75(2.54 - 9.53)%,幸存者和非幸存者的P值分别<0.001)。EuroSCORE II评分显著预测医院死亡率(比值比:1.13(95%置信区间:1.09 - 1.18),P <0.001),AUC为0.736。RF实现了最佳的ML性能(准确率 = 98,精确率 = 100,召回率 = 97,F1分数 = 98)。使用SHAP的可解释人工智能显示最重要的特征如下:术前乳酸水平、急诊手术、慢性肾脏病(CKD)、非ST段抬高型心肌梗死(NSTEMI)、非吸烟状态和性别。QLattice将乳酸和CKD确定为预测该患者群体医院死亡率的最重要因素。

结论

本研究证明了ML,特别是随机森林,在准确预测因LMCA疾病接受CABG患者的医院死亡率方面的潜力及其优于传统方法的优势。所确定的关键风险因素,包括术前乳酸水平、急诊手术、慢性肾脏病、NSTEMI、非吸烟状态和性别,为这一高风险患者群体的风险分层和明智决策提供了有价值的见解。此外,将新确定的风险因素纳入未来的风险评分系统可以进一步提高死亡率预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed9c/11573096/208eafd8b21d/js9-110-7142-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验