Suppr超能文献

模拟胶原纤维原降解与基质微观结构的关系。

Modeling collagen fibril degradation as a function of matrix microarchitecture.

机构信息

Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA.

Department of Bioengineering, University of California San Diego, CA 92093, USA.

出版信息

Soft Matter. 2024 Nov 27;20(46):9286-9300. doi: 10.1039/d4sm00971a.

Abstract

Collagenolytic degradation is a process fundamental to tissue remodeling. The microarchitecture of collagen fibril networks changes during development, aging, and disease. Such changes to microarchitecture are often accompanied by changes in matrix degradability. In a matrix, the pore size and fibril characteristics such as length, diameter, number, orientation, and curvature are the major variables that define the microarchitecture. , collagen matrices of the same concentration but different microarchitectures also vary in degradation rate. How do different microarchitectures affect matrix degradation? To answer this question, we developed a computational model of collagen degradation. We first developed a lattice model that describes collagen degradation at the scale of a single fibril. We then extended this model to investigate the role of microarchitecture using Brownian dynamics simulation of enzymes in a multi-fibril three dimensional matrix to predict its degradability. Our simulations predict that the distribution of enzymes around the fibrils is non-uniform and depends on the microarchitecture of the matrix. This non-uniformity in enzyme distribution can lead to different extents of degradability for matrices of different microarchitectures. Our simulations predict that for the same enzyme concentration and collagen concentration, a matrix with thicker fibrils degrades more than that with thinner fibrils. Our model predictions were tested using experiments with synthetic collagen gels of different microarchitectures. Experiments showed that indeed degradation of collagen depends on the matrix architecture and fibril thickness. In summary, our study shows that the microarchitecture of the collagen matrix is an important determinant of its degradability.

摘要

胶原降解是组织重塑的一个基本过程。在发育、衰老和疾病过程中,胶原纤维网络的微观结构会发生变化。这种微观结构的变化通常伴随着基质降解能力的变化。在基质中,孔径和纤维特征(如长度、直径、数量、取向和曲率)是定义微观结构的主要变量。即使是浓度相同但微观结构不同的胶原基质,其降解速率也不同。不同的微观结构如何影响基质降解?为了回答这个问题,我们开发了一个胶原降解的计算模型。我们首先开发了一个描述单个纤维降解的晶格模型。然后,我们使用布朗动力学模拟多纤维三维基质中的酶,扩展了该模型,以研究微观结构对其降解性的作用,从而预测其降解性。我们的模拟预测,酶在纤维周围的分布是不均匀的,并且取决于基质的微观结构。这种酶分布的不均匀性可能导致不同微观结构的基质具有不同的降解程度。我们的模拟预测,在相同的酶浓度和胶原浓度下,具有较厚纤维的基质比具有较薄纤维的基质降解得更多。我们的模型预测通过具有不同微观结构的合成胶原凝胶的实验进行了验证。实验表明,胶原的降解确实取决于基质结构和纤维厚度。总之,我们的研究表明,胶原基质的微观结构是其降解能力的重要决定因素。

相似文献

引用本文的文献

本文引用的文献

9
Hydrogel microparticles for biomedical applications.用于生物医学应用的水凝胶微粒
Nat Rev Mater. 2020 Jan;5(1):20-43. doi: 10.1038/s41578-019-0148-6. Epub 2019 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验