Ding Jiafeng, Wang Yu, Liang Jinjiao, He Zhenhuan, Zhai Changhong, He Yinghao, Xu Jiayin, Lei Lei, Mu Jing, Zheng Min, Liu Boyang, Shi Mingxian
College of Animal Science and Technology, Guangxi University, Nanning, China.
Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China.
Front Vet Sci. 2024 Jun 3;11:1395327. doi: 10.3389/fvets.2024.1395327. eCollection 2024.
Equine influenza (EI) is a severe infectious disease that causes huge economic losses to the horse industry. Spatial epidemiology technology can explore the spatiotemporal distribution characteristics and occurrence risks of infectious diseases, it has played an important role in the prevention and control of major infectious diseases in humans and animals. For the first time, this study conducted a systematic analysis of the spatiotemporal distribution of EI using SaTScan software and investigated the important environmental variables and suitable areas for EI occurrence using the Maxent model. A total of 517 occurrences of EI from 2005 to 2022 were evaluated, and 14 significant spatiotemporal clusters were identified. Furthermore, a Maxent model was successfully established with high prediction accuracy (AUC = 0.920 ± 0.008). The results indicated that annual average ultraviolet radiation, horse density, and precipitation of the coldest quarter were the three most important environmental variables affecting EI occurrence. The suitable areas for EI occurrence are widely distributed across all continents, especially in Asia (India, Mongolia, and China) and the Americas (Brazil, Uruguay, USA, and Mexico). In the future, these suitable areas will expand and move eastward. The largest expansion is predicted under SSP126 scenarios, while the opposite trend will be observed under SSP585 scenarios. This study presents the spatial epidemiological characteristics of EI for the first time. The results could provide valuable scientific insights that can effectively inform prevention and control strategies in regions at risk of EI worldwide.
马流感(EI)是一种严重的传染病,给养马业造成巨大经济损失。空间流行病学技术可以探索传染病的时空分布特征和发生风险,在人类和动物重大传染病的防控中发挥了重要作用。本研究首次使用SaTScan软件对EI的时空分布进行了系统分析,并使用Maxent模型研究了EI发生的重要环境变量和适宜区域。评估了2005年至2022年共517起EI事件,识别出14个显著的时空聚集区。此外,成功建立了预测准确率较高的Maxent模型(AUC = 0.920 ± 0.008)。结果表明,年平均紫外线辐射、马匹密度和最冷月降水量是影响EI发生的三个最重要的环境变量。EI发生的适宜区域广泛分布于各大洲,尤其是亚洲(印度、蒙古和中国)和美洲(巴西、乌拉圭、美国和墨西哥)。未来,这些适宜区域将扩大并向东移动。预计在SSP126情景下扩张最大,而在SSP585情景下将观察到相反趋势。本研究首次呈现了EI的空间流行病学特征。研究结果可为全球EI风险地区的防控策略提供有价值的科学依据。