Suppr超能文献

用于支持诊断设备性能评估的阳性/阴性似然比区间估计的贝叶斯方法与评分方法的比较。

A comparison of Bayesian and score methods for interval estimates of positive/negative likelihood ratios in support of diagnostic device performance evaluation.

作者信息

Hu Tingting, Sahiner Berkman, Petrick Nicholas, Cha Kenny, Wen Si, Pennello Gene

机构信息

Office of Science and Engineering Laboratories (OSEL), CDRH, USFDA, Silver Spring, Maryland, USA.

出版信息

J Biopharm Stat. 2025;35(4):711-729. doi: 10.1080/10543406.2024.2364723. Epub 2024 Jun 18.

Abstract

BACKGROUND

Positive and negative likelihood ratios (PLR and NLR) are important metrics of accuracy for diagnostic devices with a binary output. However, the properties of Bayesian and frequentist interval estimators of PLR/NLR have not been extensively studied and compared. In this study, we explore the potential use of the Bayesian method for interval estimation of PLR/NLR, and, more broadly, for interval estimation of the ratio of two independent proportions.

METHODS

We develop a Bayesian-based approach for interval estimation of PLR/NLR for use as a part of a diagnostic device performance evaluation. Our approach is applicable to a broader setting for interval estimation of any ratio of two independent proportions. We compare score and Bayesian interval estimators for the ratio of two proportions in terms of the coverage probability (CP) and expected interval width (EW) via extensive experiments and applications to two case studies. A supplementary experiment was also conducted to assess the performance of the proposed exact Bayesian method under different priors.

RESULTS

Our experimental results show that the overall mean CP for Bayesian interval estimation is consistent with that for the score method (0.950 vs. 0.952), and the overall mean EW for Bayesian is shorter than that for score method (15.929 vs. 19.724). Application to two case studies showed that the intervals estimated using the Bayesian and frequentist approaches are very similar.

DISCUSSION

Our numerical results indicate that the proposed Bayesian approach has a comparable CP performance with the score method while yielding higher precision (i.e. a shorter EW).

摘要

背景

阳性和阴性似然比(PLR和NLR)是具有二元输出的诊断设备准确性的重要指标。然而,PLR/NLR的贝叶斯和频率主义区间估计量的性质尚未得到广泛研究和比较。在本研究中,我们探讨了贝叶斯方法在PLR/NLR区间估计中的潜在应用,更广泛地说,在两个独立比例之比的区间估计中的应用。

方法

我们开发了一种基于贝叶斯的方法用于PLR/NLR的区间估计,作为诊断设备性能评估的一部分。我们的方法适用于更广泛的两个独立比例之比的区间估计设置。我们通过广泛的实验以及在两个案例研究中的应用,比较了两个比例之比的得分区间估计量和贝叶斯区间估计量在覆盖概率(CP)和期望区间宽度(EW)方面的表现。还进行了一项补充实验,以评估所提出的精确贝叶斯方法在不同先验下的性能。

结果

我们的实验结果表明,贝叶斯区间估计的总体平均CP与得分方法的总体平均CP一致(0.950对0.952),并且贝叶斯的总体平均EW比得分方法的短(15.929对19.724)。应用于两个案例研究表明,使用贝叶斯方法和频率主义方法估计的区间非常相似。

讨论

我们的数值结果表明,所提出的贝叶斯方法在CP性能方面与得分方法相当,同时具有更高的精度(即更短的EW)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验