Suppr超能文献

保持那个姿势:从视频中捕捉颈部肌张力障碍的头部偏斜严重程度。

Hold that pose: capturing cervical dystonia's head deviation severity from video.

机构信息

Institute for Neural Computation, University of California, San Diego, La Jolla, California, USA.

Department of Computer Science, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.

出版信息

Ann Clin Transl Neurol. 2022 May;9(5):684-694. doi: 10.1002/acn3.51549. Epub 2022 Mar 25.

Abstract

OBJECTIVE

Deviated head posture is a defining characteristic of cervical dystonia (CD). Head posture severity is typically quantified with clinical rating scales such as the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). Because clinical rating scales are inherently subjective, they are susceptible to variability that reduces their sensitivity as outcome measures. The variability could be circumvented with methods to measure CD head posture objectively. However, previously used objective methods require specialized equipment and have been limited to studies with a small number of cases. The objective of this study was to evaluate a novel software system-the Computational Motor Objective Rater (CMOR)-to quantify multi-axis directionality and severity of head posture in CD using only conventional video camera recordings.

METHODS

CMOR is based on computer vision and machine learning technology that captures 3D head angle from video. We used CMOR to quantify the axial patterns and severity of predominant head posture in a retrospective, cross-sectional study of 185 patients with isolated CD recruited from 10 sites in the Dystonia Coalition.

RESULTS

The predominant head posture involved more than one axis in 80.5% of patients and all three axes in 44.4%. CMOR's metrics for head posture severity correlated with severity ratings from movement disorders neurologists using both the TWSTRS-2 and an adapted version of the Global Dystonia Rating Scale (rho = 0.59-0.68, all p <0.001).

CONCLUSIONS

CMOR's convergent validity with clinical rating scales and reliance upon only conventional video recordings supports its future potential for large scale multisite clinical trials.

摘要

目的

头部姿势偏斜是颈性肌张力障碍(CD)的一个特征。头部姿势的严重程度通常通过临床评分量表来量化,如多伦多西部痉挛性斜颈评分量表(TWSTRS)。由于临床评分量表具有内在的主观性,因此它们容易受到变异的影响,从而降低了作为结果测量的敏感性。这种变异性可以通过测量 CD 头部姿势的客观方法来避免。然而,以前使用的客观方法需要专门的设备,并且仅限于少数病例的研究。本研究的目的是评估一种新的软件系统——计算运动客观评分器(CMOR),该系统仅使用常规摄像机记录来量化 CD 多轴方向和头部姿势的严重程度。

方法

CMOR 基于计算机视觉和机器学习技术,从视频中捕获 3D 头部角度。我们使用 CMOR 来量化 185 例孤立性 CD 患者的主要头部姿势的轴向模式和严重程度,这些患者是从 Dystonia Coalition 的 10 个地点招募的。

结果

在 80.5%的患者中,主要头部姿势涉及不止一个轴,在 44.4%的患者中涉及所有三个轴。CMOR 头部姿势严重程度的指标与运动障碍神经学家使用 TWSTRS-2 和改编版全球肌张力障碍评分量表(rho = 0.59-0.68,均 p <0.001)进行的严重程度评分相关。

结论

CMOR 与临床评分量表的收敛有效性以及仅依赖常规录像记录支持了其未来在大规模多中心临床试验中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a9/9082391/2b7de691f666/ACN3-9-684-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验