Suppr超能文献

一种使用少量判断和调查变量预测焦虑水平的新方法。

A novel approach to anxiety level prediction using small sets of judgment and survey variables.

作者信息

Bari Sumra, Kim Byoung-Woo, Vike Nicole L, Lalvani Shamal, Stefanopoulos Leandros, Maglaveras Nicos, Block Martin, Strawn Jeffrey, Katsaggelos Aggelos K, Breiter Hans C

机构信息

Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA.

Department of Electrical Engineering, Northwestern University, Evanston, IL, USA.

出版信息

Npj Ment Health Res. 2024 Jun 18;3(1):29. doi: 10.1038/s44184-024-00074-x.

Abstract

Anxiety, a condition characterized by intense fear and persistent worry, affects millions each year and, when severe, is distressing and functionally impairing. Numerous machine learning frameworks have been developed and tested to predict features of anxiety and anxiety traits. This study extended these approaches by using a small set of interpretable judgment variables (n = 15) and contextual variables (demographics, perceived loneliness, COVID-19 history) to (1) understand the relationships between these variables and (2) develop a framework to predict anxiety levels [derived from the State Trait Anxiety Inventory (STAI)]. This set of 15 judgment variables, including loss aversion and risk aversion, models biases in reward/aversion judgments extracted from an unsupervised, short (2-3 min) picture rating task (using the International Affective Picture System) that can be completed on a smartphone. The study cohort consisted of 3476 de-identified adult participants from across the United States who were recruited using an email survey database. Using a balanced Random Forest approach with these judgment and contextual variables, STAI-derived anxiety levels were predicted with up to 81% accuracy and 0.71 AUC ROC. Normalized Gini scores showed that the most important predictors (age, loneliness, household income, employment status) contributed a total of 29-31% of the cumulative relative importance and up to 61% was contributed by judgment variables. Mediation/moderation statistics revealed that the interactions between judgment and contextual variables appears to be important for accurately predicting anxiety levels. Median shifts in judgment variables described a behavioral profile for individuals with higher anxiety levels that was characterized by less resilience, more avoidance, and more indifference behavior. This study supports the hypothesis that distinct constellations of 15 interpretable judgment variables, along with contextual variables, could yield an efficient and highly scalable system for mental health assessment. These results contribute to our understanding of underlying psychological processes that are necessary to characterize what causes variance in anxiety conditions and its behaviors, which can impact treatment development and efficacy.

摘要

焦虑症是一种以强烈恐惧和持续担忧为特征的疾病,每年影响着数百万人,严重时会令人痛苦并导致功能受损。人们已经开发并测试了许多机器学习框架来预测焦虑症的特征和焦虑特质。本研究通过使用一小部分可解释的判断变量(n = 15)和背景变量(人口统计学、感知到的孤独感、新冠病史)来扩展这些方法,以(1)理解这些变量之间的关系,以及(2)开发一个预测焦虑水平的框架[源自状态-特质焦虑量表(STAI)]。这组15个判断变量,包括损失厌恶和风险厌恶,对从一个无监督的、简短(2 - 3分钟)图片评分任务(使用国际情感图片系统)中提取的奖励/厌恶判断偏差进行建模,该任务可在智能手机上完成。研究队列由来自美国各地的3476名身份不明的成年参与者组成,他们是通过电子邮件调查数据库招募的。使用平衡随机森林方法结合这些判断和背景变量,预测源自STAI的焦虑水平的准确率高达81%,曲线下面积(AUC)为0.71。标准化基尼系数显示,最重要的预测因素(年龄、孤独感、家庭收入、就业状况)总共贡献了累积相对重要性的29 - 31%,而判断变量贡献了高达61%。中介/调节统计显示,判断变量和背景变量之间的相互作用对于准确预测焦虑水平似乎很重要。判断变量的中位数变化描述了焦虑水平较高个体的行为特征,其特点是恢复力较低、回避行为更多、冷漠行为更多。本研究支持这样一种假设,即15个可解释的判断变量与背景变量的不同组合,可以产生一个高效且高度可扩展的心理健康评估系统。这些结果有助于我们理解潜在的心理过程,这些过程对于确定焦虑状况及其行为的差异成因至关重要,而这些差异可能会影响治疗的开发和疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3af/11189415/0f0dd896e251/44184_2024_74_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验