Lapsina Sandra, Riond Barbara, Hofmann-Lehmann Regina, Stirn Martina
Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland.
SIA Laboklin, Fridriha Candera iela 4, LV-1046 Riga, Latvia.
Animals (Basel). 2024 May 31;14(11):1655. doi: 10.3390/ani14111655.
Cerebrospinal fluid analysis is an important diagnostic test when assessing a neurological canine patient. For this analysis, the total nucleated cell count and differential cell counts are routinely taken, but both involve time-consuming manual methods. To investigate faster automated methods, in this study, the Sysmex XN-V body fluid mode and the deep-learning-based algorithm generated by the Olympus VS200 slide scanner were compared with the manual methods in 161 canine cerebrospinal fluid samples for the total nucleated cell count and in 65 samples with pleocytosis for the differential counts. Following incorrect gating by the Sysmex body fluid mode, all samples were reanalyzed with manually set gates. The Sysmex body fluid mode then showed a mean bias of 15.19 cells/μL for the total nucleated cell count and mean biases of 4.95% and -4.95% for the two-part differential cell count, while the deep-learning-based algorithm showed mean biases of -7.25%, -0.03% and 7.27% for the lymphocytes, neutrophils and monocytoid cells, respectively. Based on our findings, we propose that the automated Sysmex body fluid mode be used to measure the total nucleated cell count in canine cerebrospinal fluid samples after making adjustments to the predefined settings from the manufacturer. However, the two-part differential count of the Sysmex body fluid mode and the deep-learning-based algorithm require some optimization.
在评估患有神经系统疾病的犬类患者时,脑脊液分析是一项重要的诊断测试。对于这项分析,通常会进行有核细胞总数和细胞分类计数,但这两种方法都涉及耗时的手工操作。为了研究更快的自动化方法,在本研究中,将Sysmex XN-V体液模式和由奥林巴斯VS200载玻片扫描仪生成的基于深度学习的算法与手工方法进行了比较,分别对161份犬脑脊液样本进行有核细胞总数计数,对65份有细胞增多的样本进行细胞分类计数。在Sysmex体液模式进行错误设门后,所有样本均使用手动设置的门重新进行分析。然后,Sysmex体液模式对有核细胞总数的平均偏差为15.19个细胞/μL,对两部分细胞分类计数的平均偏差分别为4.95%和-4.95%,而基于深度学习的算法对淋巴细胞、中性粒细胞和单核样细胞的平均偏差分别为-7.25%、-0.03%和7.27%。基于我们的研究结果,我们建议在对制造商预定义的设置进行调整后,使用自动化的Sysmex体液模式来测量犬脑脊液样本中的有核细胞总数。然而,Sysmex体液模式的两部分细胞分类计数和基于深度学习的算法需要进行一些优化。