Quarta Elisa, Bourqqia-Ramzi Marwane, Muñoz-Rodriguez David, García-Esteban María Teresa, Murciano-Cespedosa Antonio, Mateos González Álvaro, Conejero-Meca Francisco José, Lombardo-Hernandez Juan, Mansilla-Guardiola Jesús, Baroni Simona, Geninatti Crich Simonetta, Geuna Stefano, Munaron Luca, Chiabrando Deborah, Herrera-Rincon Celia
Department of Biodiversity, Ecology & Evolution, and Modeling, Data Analysis & Computational Tools for Biology Research Group, Biomathematics Unit, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Turin, Italy.
Microbiologyopen. 2025 Jun;14(3):e70015. doi: 10.1002/mbo3.70015.
Iron deficiency (ID) is the most common nutritional deficiency worldwide, impacting gut bacteria's metabolism and cellular biochemistry, but its effects on the microbiota-gut-brain axis (MGB) are poorly understood. Early-life ID-related dysbiosis is linked to neurodevelopmental impairments like autism and attention deficit hyperactivity disorder. Studying ID's impact on bacterial signaling can guide interventions to target MGB in iron-deficient populations. This study examined the responses of Escherichia coli (E. coli) and Limosilactobacillus reuteri (L. reuteri) to in-vitro ID conditions using the iron chelator 2,2'-Bipyridyl (BP).
We assessed and modeled their growth and cultivability and explored their bioelectric profiles using the voltage-sensitive dye DiBAC4(3). Results showed differential responses: L. reuteri's growth and cultivability were unaffected by BP, while E. coli's growth rate and cultivability decreased under ID. Additionally, we created a deterministic mathematical model that demonstrated a decrease in the population's average reproduction rate in E. coli under ID. Only E. coli exhibited an altered bioelectric profile, marked by increased cell depolarization in ID conditions, which was largely rescued upon the addition of a saturating concentration of iron.
These findings highlight specific bioelectrical responses in gut bacteria to ID. Understanding this variability is crucial for deciphering the microbiota's role in health and disease, particularly concerning nutritional iron imbalance and bacterial signaling in the MGB.
缺铁(ID)是全球最常见的营养缺乏症,会影响肠道细菌的代谢和细胞生物化学,但人们对其对微生物群-肠道-脑轴(MGB)的影响了解甚少。生命早期与ID相关的生态失调与自闭症和注意力缺陷多动障碍等神经发育障碍有关。研究ID对细菌信号传导的影响可以指导针对缺铁人群MGB的干预措施。本研究使用铁螯合剂2,2'-联吡啶(BP)研究了大肠杆菌(E. coli)和罗伊氏乳杆菌(L. reuteri)对体外ID条件的反应。
我们评估并模拟了它们的生长和可培养性,并使用电压敏感染料DiBAC4(3)探索了它们的生物电特性。结果显示出不同的反应:罗伊氏乳杆菌的生长和可培养性不受BP影响,而在ID条件下大肠杆菌的生长速率和可培养性下降。此外,我们创建了一个确定性数学模型,该模型表明在ID条件下大肠杆菌群体的平均繁殖率下降。只有大肠杆菌表现出生物电特性的改变,其特征是在ID条件下细胞去极化增加,在添加饱和浓度的铁后这种情况在很大程度上得到缓解。
这些发现突出了肠道细菌对ID的特定生物电反应。了解这种变异性对于解读微生物群在健康和疾病中的作用至关重要,特别是在营养性铁失衡和MGB中的细菌信号传导方面。