Suppr超能文献

视网膜图像中的异常检测与生物标志物定位

Anomaly Detection and Biomarkers Localization in Retinal Images.

作者信息

Tiosano Liran, Abutbul Ron, Lender Rivkah, Shwartz Yahel, Chowers Itay, Hoshen Yedid, Levy Jaime

机构信息

Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Hadassah School of Medicine, Hebrew University, Jerusalem 9574409, Israel.

School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 9574409, Israel.

出版信息

J Clin Med. 2024 May 24;13(11):3093. doi: 10.3390/jcm13113093.

Abstract

: To design a novel anomaly detection and localization approach using artificial intelligence methods using optical coherence tomography (OCT) scans for retinal diseases. : High-resolution OCT scans from the publicly available Kaggle dataset and a local dataset were used by four state-of-the-art self-supervised frameworks. The backbone model of all the frameworks was a pre-trained convolutional neural network (CNN), which enabled the extraction of meaningful features from OCT images. Anomalous images included choroidal neovascularization (CNV), diabetic macular edema (DME), and the presence of drusen. Anomaly detectors were evaluated by commonly accepted performance metrics, including area under the receiver operating characteristic curve, F1 score, and accuracy. : A total of 25,315 high-resolution retinal OCT slabs were used for training. Test and validation sets consisted of 968 and 4000 slabs, respectively. The best performing across all anomaly detectors had an area under the receiver operating characteristic of 0.99. All frameworks were shown to achieve high performance and generalize well for the different retinal diseases. Heat maps were generated to visualize the quality of the frameworks' ability to localize anomalous areas of the image. : This study shows that with the use of pre-trained feature extractors, the frameworks tested can generalize to the domain of retinal OCT scans and achieve high image-level ROC-AUC scores. The localization results of these frameworks are promising and successfully capture areas that indicate the presence of retinal pathology. Moreover, such frameworks have the potential to uncover new biomarkers that are difficult for the human eye to detect. Frameworks for anomaly detection and localization can potentially be integrated into clinical decision support and automatic screening systems that will aid ophthalmologists in patient diagnosis, follow-up, and treatment design. This work establishes a solid basis for further development of automated anomaly detection frameworks for clinical use.

摘要

设计一种使用人工智能方法的新型异常检测和定位方法,利用光学相干断层扫描(OCT)扫描来诊断视网膜疾病。四个最先进的自监督框架使用了来自公开可用的Kaggle数据集和本地数据集的高分辨率OCT扫描。所有框架的骨干模型都是预训练的卷积神经网络(CNN),它能够从OCT图像中提取有意义的特征。异常图像包括脉络膜新生血管(CNV)、糖尿病性黄斑水肿(DME)和玻璃膜疣的存在。异常检测器通过常用的性能指标进行评估,包括接收器操作特征曲线下的面积、F1分数和准确率。总共使用了25315个高分辨率视网膜OCT平板进行训练。测试集和验证集分别由968个和平板和4000个平板组成。所有异常检测器中表现最佳的在接收器操作特征曲线下的面积为0.99。所有框架都表现出高性能,并且对不同的视网膜疾病具有良好的泛化能力。生成热图以可视化框架定位图像异常区域的能力质量。这项研究表明,通过使用预训练的特征提取器,测试的框架可以推广到视网膜OCT扫描领域,并获得高图像级ROC-AUC分数。这些框架的定位结果很有前景,成功地捕捉到了表明存在视网膜病变的区域。此外,这样的框架有可能发现人眼难以检测到的新生物标志物。异常检测和定位框架有可能集成到临床决策支持和自动筛查系统中,这将有助于眼科医生进行患者诊断、随访和治疗设计。这项工作为进一步开发临床使用的自动异常检测框架奠定了坚实的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/873c/11173078/f7f6d459aa28/jcm-13-03093-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验