Suppr超能文献

一种使用计数盒分形维数对黑色素瘤和非黑色素瘤病变进行分类的机器学习方法的开发、应用及效用

Development, Application and Utility of a Machine Learning Approach for Melanoma and Non-Melanoma Lesion Classification Using Counting Box Fractal Dimension.

作者信息

Romero-Morelos Pablo, Herrera-López Elizabeth, González-Yebra Beatriz

机构信息

Department of Research, State University of the Valley of Ecatepec, Ecatepec 55210, México State, Mexico.

National Laboratory of Artificial Intelligence and Data Science, CONAHCyT (LNC-IACD), Ecatepec 55210, México State, Mexico.

出版信息

Diagnostics (Basel). 2024 May 29;14(11):1132. doi: 10.3390/diagnostics14111132.

Abstract

The diagnosis and identification of melanoma are not always accurate, even for experienced dermatologists. Histopathology continues to be the gold standard, assessing specific parameters such as the Breslow index. However, it remains invasive and may lack effectiveness. Therefore, leveraging mathematical modeling and informatics has been a pursuit of diagnostic methods favoring early detection. Fractality, a mathematical parameter quantifying complexity and irregularity, has proven useful in melanoma diagnosis. Nonetheless, no studies have implemented this metric to feed artificial intelligence algorithms for the automatic classification of dermatological lesions, including melanoma. Hence, this study aimed to determine the combined utility of fractal dimension and unsupervised low-computational-requirements machine learning models in classifying melanoma and non-melanoma lesions. We analyzed 39,270 dermatological lesions obtained from the International Skin Imaging Collaboration. Box-counting fractal dimensions were calculated for these lesions. Fractal values were used to implement classification methods by unsupervised machine learning based on principal component analysis and iterated K-means (100 iterations). A clear separation was observed, using only fractal dimension values, between benign or malignant lesions (sensibility 72.4% and specificity 50.1%) and melanoma or non-melanoma lesions (sensibility 72.8% and specificity 50%) and subsequently, the classification quality based on the machine learning model was ≈80% for both benign and malignant or melanoma and non-melanoma lesions. However, the grouping of metastatic melanoma versus non-metastatic melanoma was less effective, probably due to the small sample size included in MM lesions. Nevertheless, we could suggest a decision algorithm based on fractal dimension for dermatological lesion discrimination. On the other hand, it was also determined that the fractal dimension is sufficient to generate unsupervised artificial intelligence models that allow for a more efficient classification of dermatological lesions.

摘要

即使对于经验丰富的皮肤科医生来说,黑色素瘤的诊断和鉴别也并非总是准确无误。组织病理学仍然是金标准,它会评估诸如 Breslow 指数等特定参数。然而,它仍然具有侵入性,而且可能缺乏有效性。因此,利用数学建模和信息学一直是对有利于早期检测的诊断方法的追求。分形性作为一种量化复杂性和不规则性的数学参数,已被证明在黑色素瘤诊断中很有用。尽管如此,尚无研究将此指标应用于为包括黑色素瘤在内的皮肤病灶自动分类的人工智能算法。因此,本研究旨在确定分形维数和低计算需求的无监督机器学习模型在区分黑色素瘤和非黑色素瘤病灶方面的联合效用。我们分析了从国际皮肤成像协作组织获得的 39270 个皮肤病灶。计算了这些病灶的盒计数分形维数。分形值被用于通过基于主成分分析和迭代 K 均值(100 次迭代)的无监督机器学习来实施分类方法。仅使用分形维数值时,良性或恶性病灶(敏感性 72.4%,特异性 50.1%)以及黑色素瘤或非黑色素瘤病灶(敏感性 72.8%,特异性 50%)之间出现了明显的区分,随后,基于机器学习模型的分类质量对于良性和恶性或黑色素瘤和非黑色素瘤病灶均约为 80%。然而,转移性黑色素瘤与非转移性黑色素瘤的分组效果较差,可能是由于黑色素瘤病灶中纳入的样本量较小。尽管如此,我们可以提出一种基于分形维数的决策算法用于皮肤病灶的鉴别。另一方面,还确定了分形维数足以生成无监督人工智能模型,从而能够更有效地对皮肤病灶进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbc6/11171650/da5af1a7daab/diagnostics-14-01132-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验