Suppr超能文献

相似文献

2
Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
Comput Methods Programs Biomed. 2019 Sep;178:201-218. doi: 10.1016/j.cmpb.2019.06.018. Epub 2019 Jun 16.
3
Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM).
Asian Pac J Cancer Prev. 2019 May 25;20(5):1555-1561. doi: 10.31557/APJCP.2019.20.5.1555.
4
Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
BMC Complement Altern Med. 2012 Aug 16;12:127. doi: 10.1186/1472-6882-12-127.
5
K-complexes Detection in EEG Signals using Fractal and Frequency Features Coupled with an Ensemble Classification Model.
Neuroscience. 2019 Dec 1;422:119-133. doi: 10.1016/j.neuroscience.2019.10.034. Epub 2019 Nov 1.
8
Higuchi dimension of digital images.
PLoS One. 2011;6(9):e24796. doi: 10.1371/journal.pone.0024796. Epub 2011 Sep 13.
9
Learning Subspace-Based RBFNN Using Coevolutionary Algorithm for Complex Classification Tasks.
IEEE Trans Neural Netw Learn Syst. 2016 Jan;27(1):47-61. doi: 10.1109/TNNLS.2015.2411615. Epub 2015 Mar 25.

引用本文的文献

1
Deep Multi-Modal Skin-Imaging-Based Information-Switching Network for Skin Lesion Recognition.
Bioengineering (Basel). 2025 Mar 12;12(3):282. doi: 10.3390/bioengineering12030282.
2
AI in dermatology: a comprehensive review into skin cancer detection.
PeerJ Comput Sci. 2024 Dec 5;10:e2530. doi: 10.7717/peerj-cs.2530. eCollection 2024.
3
LightDPH: Lightweight Dual-Projection-Head Hierarchical Contrastive Learning for Skin Lesion Classification.
J Healthc Inform Res. 2024 Oct 1;8(4):619-639. doi: 10.1007/s41666-024-00174-5. eCollection 2024 Dec.
7
Refining skin lesions classification performance using geometric features of superpixels.
Sci Rep. 2023 Jul 15;13(1):11463. doi: 10.1038/s41598-023-38706-5.

本文引用的文献

2
Towards Accurate Diagnosis of Skin Lesions Using Feedforward Back Propagation Neural Networks.
Diagnostics (Basel). 2021 May 22;11(6):936. doi: 10.3390/diagnostics11060936.
3
Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.
Radiol Imaging Cancer. 2021 May;3(3):e200024. doi: 10.1148/rycan.2021200024.
4
A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images.
PeerJ Comput Sci. 2020 Jun 29;6:e268. doi: 10.7717/peerj-cs.268. eCollection 2020.
5
Deep Learning for Understanding Satellite Imagery: An Experimental Survey.
Front Artif Intell. 2020 Nov 16;3:534696. doi: 10.3389/frai.2020.534696. eCollection 2020.
7
DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images.
BMC Bioinformatics. 2020 Mar 11;21(Suppl 2):84. doi: 10.1186/s12859-020-3351-y.
8
Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.
Comput Methods Programs Biomed. 2020 Jul;190:105351. doi: 10.1016/j.cmpb.2020.105351. Epub 2020 Jan 23.
10
Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM).
Asian Pac J Cancer Prev. 2019 May 25;20(5):1555-1561. doi: 10.31557/APJCP.2019.20.5.1555.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验