Golkarieh Alireza, Razmara Parsa, Lagzian Ahmadreza, Dolatabadi Amirhosein, Mousavirad Seyed Jalaleddin
Department of Mechanical Engineering, University of Michigan, Michigan, USA.
University of Southern California, Los Angeles, CA, USA.
Sci Rep. 2025 Aug 30;15(1):31977. doi: 10.1038/s41598-025-17756-x.
Melanoma, influenced by changes in deoxyribonucleic acid (DNA), requires early detection for effective treatment. Traditional melanoma research often employs supervised learning methods, which necessitate large, labeled datasets and are sensitive to hyperparameter settings. This paper presents a diagnostic model for melanoma, utilizing a semi-supervised generative adversarial network (SS-GAN) to enhance the accuracy of the classifier. The model is further optimized through an enhanced artificial bee colony (ABC) algorithm for hyperparameter tuning. Conventional SS-GANs face challenges such as mode collapse, weak modeling of global dependencies, poor generalization to unlabeled data, and unreliable pseudo-labels. To address these issues, we propose four improvements. First, we add a reconstruction loss in the generator to minimize mode collapse and maintain structural integrity. Second, we introduce self-attention in both the generator and the discriminator to model long-range dependencies and enrich features. Third, we apply consistency regularization on the discriminator to stabilize predictions on augmented samples. Fourth, we use pseudo-labeling that leverages only confident predictions on unlabeled data for supervised training in the discriminator. To reduce dependence on hyperparameter choices, the Random Key method is applied, enhanced through a mutual learning-based ABC (ML-ABC) optimization. We evaluated the model on four datasets: International Skin Imaging Collaboration 2020 (ISIC-2020), Human Against Machine's 10,000 images (HAM10000), Pedro Hispano Hospital (PH2), and DermNet datasets. The model demonstrated a strong ability to distinguish between melanoma and non-melanoma images, achieving F-measures of 92.769%, 93.376%, 90.629%, and 92.617%, respectively. This approach enhances melanoma image classification under limited labeled data, as validated on multiple benchmark datasets. Code is publicly available at https://github.com/AmirhoseinDolatabadi/Melanoma .
黑色素瘤受脱氧核糖核酸(DNA)变化的影响,需要早期检测以进行有效治疗。传统的黑色素瘤研究通常采用监督学习方法,这需要大量有标签的数据集,并且对超参数设置敏感。本文提出了一种黑色素瘤诊断模型,利用半监督生成对抗网络(SS-GAN)来提高分类器的准确性。该模型通过增强人工蜂群(ABC)算法进行超参数调整,进一步得到优化。传统的SS-GAN面临诸如模式崩溃、全局依赖性建模薄弱、对未标记数据的泛化能力差以及伪标签不可靠等挑战。为了解决这些问题,我们提出了四项改进措施。首先,我们在生成器中添加重建损失,以最小化模式崩溃并保持结构完整性。其次,我们在生成器和判别器中都引入自注意力机制,以对长程依赖性进行建模并丰富特征。第三,我们在判别器上应用一致性正则化,以稳定对增强样本的预测。第四,我们使用伪标签,该伪标签仅利用对未标记数据的可靠预测进行判别器中的监督训练。为了减少对超参数选择的依赖,应用了随机键方法,并通过基于相互学习的ABC(ML-ABC)优化进行了增强。我们在四个数据集上对该模型进行了评估:国际皮肤成像协作组织2020(ISIC-2020)、人机对抗的10000张图像(HAM10000)、佩德罗·伊斯帕诺医院(PH2)和皮肤病网络数据集。该模型表现出很强的区分黑色素瘤和非黑色素瘤图像的能力,F值分别达到92.769%、93.376%、90.629%和92.617%。如在多个基准数据集上所验证的,这种方法在有限的标记数据下增强了黑色素瘤图像分类。代码可在https://github.com/AmirhoseinDolatabadi/Melanoma上公开获取。