Suppr超能文献

基于智能手机中嵌入的多传感器的位置感知室内人体活动识别

Position-Aware Indoor Human Activity Recognition Using Multisensors Embedded in Smartphones.

机构信息

School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110168, China.

School of Computer Science and Technology, Anhui University of Technology, Maanshan 243099, China.

出版信息

Sensors (Basel). 2024 May 24;24(11):3367. doi: 10.3390/s24113367.

Abstract

Composite indoor human activity recognition is very important in elderly health monitoring and is more difficult than identifying individual human movements. This article proposes a sensor-based human indoor activity recognition method that integrates indoor positioning. Convolutional neural networks are used to extract spatial information contained in geomagnetic sensors and ambient light sensors, while transform encoders are used to extract temporal motion features collected by gyroscopes and accelerometers. We established an indoor activity recognition model with a multimodal feature fusion structure. In order to explore the possibility of using only smartphones to complete the above tasks, we collected and established a multisensor indoor activity dataset. Extensive experiments verified the effectiveness of the proposed method. Compared with algorithms that do not consider the location information, our method has a 13.65% improvement in recognition accuracy.

摘要

复合室内人体活动识别在老年人健康监测中非常重要,而且比识别个体人体运动更具挑战性。本文提出了一种基于传感器的室内人体活动识别方法,该方法集成了室内定位。卷积神经网络用于提取地磁传感器和环境光传感器中包含的空间信息,而变换编码器则用于提取由陀螺仪和加速度计收集的时间运动特征。我们建立了一个具有多模态特征融合结构的室内活动识别模型。为了探索仅使用智能手机完成上述任务的可能性,我们收集并建立了一个多传感器室内活动数据集。大量实验验证了所提出方法的有效性。与不考虑位置信息的算法相比,我们的方法在识别精度上提高了 13.65%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da5d/11174404/280e3db8102d/sensors-24-03367-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验