Suppr超能文献

使用移动传感器的人类活动识别的符号表示法:MBOSS

MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors.

机构信息

Computer Institute, Federal University of Amazonas, Manaus 69080-900, Brazil.

Department of Computer Science, University of São Paulo, São Paulo 05508-090, Brazil.

出版信息

Sensors (Basel). 2018 Dec 10;18(12):4354. doi: 10.3390/s18124354.

Abstract

Human activity recognition (HAR) through sensors embedded in smartphones has allowed for the development of systems that are capable of detecting and monitoring human behavior. However, such systems have been affected by the high consumption of computational resources (e.g., memory and processing) needed to effectively recognize activities. In addition, existing HAR systems are mostly based on supervised classification techniques, in which the feature extraction process is done manually, and depends on the knowledge of a specialist. To overcome these limitations, this paper proposes a new method for recognizing human activities based on symbolic representation algorithms. The method, called "Multivariate Bag-Of-SFA-Symbols" (MBOSS), aims to increase the efficiency of HAR systems and maintain accuracy levels similar to those of conventional systems based on time and frequency domain features. The experiments conducted on three public datasets showed that MBOSS performed the best in terms of accuracy, processing time, and memory consumption.

摘要

通过在智能手机中嵌入传感器进行人体活动识别 (HAR),已经开发出能够检测和监控人体行为的系统。然而,此类系统受到有效识别活动所需的高计算资源(例如内存和处理能力)消耗的影响。此外,现有的 HAR 系统大多基于监督分类技术,其中特征提取过程是手动完成的,并且依赖于专家的知识。为了克服这些限制,本文提出了一种基于符号表示算法的新的人体活动识别方法。该方法称为“多变量袋-Of-SFA-符号”(MBOSS),旨在提高 HAR 系统的效率,并保持与基于时间和频域特征的传统系统相似的准确性水平。在三个公共数据集上进行的实验表明,MBOSS 在准确性、处理时间和内存消耗方面表现最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验