Suppr超能文献

基于计算机视觉和深度学习的情绪检测系统评价综述。

Systematic Review of Emotion Detection with Computer Vision and Deep Learning.

机构信息

Computer Science and Communications Research Centre, School of Technology and Management, Polytechnic of Leiria, 2411-901 Leiria, Portugal.

INOV INESC Inovação, Institute of New Technologies, Leiria Office, 2411-901 Leiria, Portugal.

出版信息

Sensors (Basel). 2024 May 28;24(11):3484. doi: 10.3390/s24113484.

Abstract

Emotion recognition has become increasingly important in the field of Deep Learning (DL) and computer vision due to its broad applicability by using human-computer interaction (HCI) in areas such as psychology, healthcare, and entertainment. In this paper, we conduct a systematic review of facial and pose emotion recognition using DL and computer vision, analyzing and evaluating 77 papers from different sources under Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our review covers several topics, including the scope and purpose of the studies, the methods employed, and the used datasets. The scope of this work is to conduct a systematic review of facial and pose emotion recognition using DL methods and computer vision. The studies were categorized based on a proposed taxonomy that describes the type of expressions used for emotion detection, the testing environment, the currently relevant DL methods, and the datasets used. The taxonomy of methods in our review includes Convolutional Neural Network (CNN), Faster Region-based Convolutional Neural Network (R-CNN), Vision Transformer (ViT), and "Other NNs", which are the most commonly used models in the analyzed studies, indicating their trendiness in the field. Hybrid and augmented models are not explicitly categorized within this taxonomy, but they are still important to the field. This review offers an understanding of state-of-the-art computer vision algorithms and datasets for emotion recognition through facial expressions and body poses, allowing researchers to understand its fundamental components and trends.

摘要

情感识别在深度学习 (DL) 和计算机视觉领域变得越来越重要,因为它可以通过在心理学、医疗保健和娱乐等领域使用人机交互 (HCI) 来广泛应用。在本文中,我们对使用 DL 和计算机视觉进行的面部和姿势情感识别进行了系统的回顾,根据首选报告项目的系统评价和荟萃分析 (PRISMA) 指南,分析和评估了来自不同来源的 77 篇论文。我们的评论涵盖了几个主题,包括研究的范围和目的、所采用的方法以及使用的数据集。这项工作的范围是使用 DL 方法和计算机视觉进行面部和姿势情感识别的系统回顾。研究根据提出的分类法进行分类,该分类法描述了用于情感检测的表情类型、测试环境、当前相关的 DL 方法和使用的数据集。我们的评论中的方法分类法包括卷积神经网络 (CNN)、更快的基于区域的卷积神经网络 (R-CNN)、视觉转换器 (ViT) 和“其他神经网络”,这是分析研究中最常用的模型,表明它们在该领域的流行趋势。混合和增强模型在该分类法中没有明确分类,但它们对该领域仍然很重要。该评论通过面部表情和身体姿势了解情感识别的最新计算机视觉算法和数据集,使研究人员能够了解其基本组成部分和趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de19/11175284/6dd27f569ed9/sensors-24-03484-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验