Suppr超能文献

用于微观图像超分辨率的残差密集注意力生成对抗网络

A Residual Dense Attention Generative Adversarial Network for Microscopic Image Super-Resolution.

作者信息

Liu Sanya, Weng Xiao, Gao Xingen, Xu Xiaoxin, Zhou Lin

机构信息

Xiamen Key Laboratory of Mobile Multimedia Communications, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China.

School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China.

出版信息

Sensors (Basel). 2024 May 31;24(11):3560. doi: 10.3390/s24113560.

Abstract

With the development of deep learning, the Super-Resolution (SR) reconstruction of microscopic images has improved significantly. However, the scarcity of microscopic images for training, the underutilization of hierarchical features in original Low-Resolution (LR) images, and the high-frequency noise unrelated with the image structure generated during the reconstruction process are still challenges in the Single Image Super-Resolution (SISR) field. Faced with these issues, we first collected sufficient microscopic images through Motic, a company engaged in the design and production of optical and digital microscopes, to establish a dataset. Secondly, we proposed a Residual Dense Attention Generative Adversarial Network (RDAGAN). The network comprises a generator, an image discriminator, and a feature discriminator. The generator includes a Residual Dense Block (RDB) and a Convolutional Block Attention Module (CBAM), focusing on extracting the hierarchical features of the original LR image. Simultaneously, the added feature discriminator enables the network to generate high-frequency features pertinent to the image's structure. Finally, we conducted experimental analysis and compared our model with six classic models. Compared with the best model, our model improved PSNR and SSIM by about 1.5 dB and 0.2, respectively.

摘要

随着深度学习的发展,微观图像的超分辨率(SR)重建有了显著改善。然而,用于训练的微观图像稀缺、原始低分辨率(LR)图像中的层次特征未得到充分利用,以及重建过程中产生的与图像结构无关的高频噪声,仍然是单图像超分辨率(SISR)领域面临的挑战。面对这些问题,我们首先通过从事光学和数字显微镜设计与生产的公司麦克奥迪收集了足够的微观图像,以建立一个数据集。其次,我们提出了一种残差密集注意力生成对抗网络(RDAGAN)。该网络由一个生成器、一个图像判别器和一个特征判别器组成。生成器包括一个残差密集块(RDB)和一个卷积块注意力模块(CBAM),专注于提取原始LR图像的层次特征。同时,添加的特征判别器使网络能够生成与图像结构相关的高频特征。最后,我们进行了实验分析,并将我们的模型与六个经典模型进行了比较。与最佳模型相比,我们的模型分别将峰值信噪比(PSNR)和结构相似性(SSIM)提高了约1.5 dB和0.2。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19a3/11175225/686ef898aff1/sensors-24-03560-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验