Suppr超能文献

工业冷却水管道腐蚀速率估算与预测的先进机器学习技术

Advanced Machine Learning Techniques for Corrosion Rate Estimation and Prediction in Industrial Cooling Water Pipelines.

作者信息

Ruiz Desiree, Casas Abraham, Escobar Cesar Adolfo, Perez Alejandro, Gonzalez Veronica

机构信息

Centro Tecnológico de Componentes-CTC, Scientific and Technological Park of Cantabria (PCTCAN), 39011 Santander, Spain.

出版信息

Sensors (Basel). 2024 May 31;24(11):3564. doi: 10.3390/s24113564.

Abstract

This paper presents the results of a study on data preprocessing and modeling for predicting corrosion in water pipelines of a steel industrial plant. The use case is a cooling circuit consisting of both direct and indirect cooling. In the direct cooling circuit, water comes into direct contact with the product, whereas in the indirect one, it does not. In this study, advanced machine learning techniques, such as extreme gradient boosting and deep neural networks, have been employed for two distinct applications. Firstly, a virtual sensor was created to estimate the corrosion rate based on influencing process variables, such as pH and temperature. Secondly, a predictive tool was designed to foresee the future evolution of the corrosion rate, considering past values of both influencing variables and the corrosion rate. The results show that the most suitable algorithm for the virtual sensor approach is the dense neural network, with MAPE values of (25 ± 4)% and (11 ± 4)% for the direct and indirect circuits, respectively. In contrast, different results are obtained for the two circuits when following the predictive tool approach. For the primary circuit, the convolutional neural network yields the best results, with MAPE = 4% on the testing set, whereas for the secondary circuit, the LSTM recurrent network shows the highest prediction accuracy, with MAPE = 9%. In general, models employing temporal windows have emerged as more suitable for corrosion prediction, with model performance significantly improving with a larger dataset.

摘要

本文介绍了一项关于钢铁厂水管腐蚀预测的数据预处理和建模研究的结果。该用例是一个由直接冷却和间接冷却组成的冷却回路。在直接冷却回路中,水与产品直接接触,而在间接冷却回路中,水不与产品直接接触。在本研究中,先进的机器学习技术,如极端梯度提升和深度神经网络,已被用于两个不同的应用。首先,创建了一个虚拟传感器,根据pH值和温度等影响过程变量来估计腐蚀速率。其次,设计了一个预测工具,考虑影响变量和腐蚀速率的过去值,来预测腐蚀速率的未来演变。结果表明,虚拟传感器方法最合适的算法是密集神经网络,直接冷却回路和间接冷却回路的平均绝对百分比误差(MAPE)值分别为(25±4)%和(11±4)%。相比之下,采用预测工具方法时,两个回路得到了不同的结果。对于主回路,卷积神经网络产生了最佳结果,测试集上的MAPE = 4%,而对于次回路,长短期记忆循环网络显示出最高的预测准确率,MAPE = 9%。一般来说,采用时间窗口的模型已被证明更适合腐蚀预测,随着数据集的增大,模型性能显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09cd/11175261/2621f5aac7a4/sensors-24-03564-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验