Suppr超能文献

用于树突棘的交互式时间序列图像分析软件。

An interactive time series image analysis software for dendritic spines.

机构信息

Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal.

Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zürich, Zürich, Switzerland.

出版信息

Sci Rep. 2022 Jul 20;12(1):12405. doi: 10.1038/s41598-022-16137-y.

Abstract

Live fluorescence imaging has demonstrated the dynamic nature of dendritic spines, with changes in shape occurring both during development and in response to activity. The structure of a dendritic spine correlates with its functional efficacy. Learning and memory studies have shown that a great deal of the information stored by a neuron is contained in the synapses. High precision tracking of synaptic structures can give hints about the dynamic nature of memory and help us understand how memories evolve both in biological and artificial neural networks. Experiments that aim to investigate the dynamics behind the structural changes of dendritic spines require the collection and analysis of large time-series datasets. In this paper, we present an open-source software called SpineS for automatic longitudinal structural analysis of dendritic spines with additional features for manual intervention to ensure optimal analysis. We have tested the algorithm on in-vitro, in-vivo, and simulated datasets to demonstrate its performance in a wide range of possible experimental scenarios.

摘要

实时荧光成像技术已经证明了树突棘的动态性质,其形状的变化既发生在发育过程中,也发生在对活动的反应中。树突棘的结构与其功能效果相关。学习和记忆研究表明,神经元存储的大量信息包含在突触中。对突触结构的高精度跟踪可以提供关于记忆动态性质的线索,并帮助我们理解记忆在生物和人工神经网络中是如何演变的。旨在研究树突棘结构变化背后动力学的实验需要收集和分析大量的时间序列数据集。在本文中,我们提出了一个名为 SpineS 的开源软件,用于自动进行树突棘的纵向结构分析,并具有手动干预的附加功能,以确保最佳分析。我们已经在体外、体内和模拟数据集上测试了该算法,以证明其在广泛的可能实验场景中的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecf4/9300710/3a8f9fbc8564/41598_2022_16137_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验