Shraim Rawan, Mooney Brian, Conkrite Karina L, Weiner Amber K, Morin Gregg B, Sorensen Poul H, Maris John M, Diskin Sharon J, Sacan Ahmet
Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, USA.
bioRxiv. 2024 Jun 6:2024.06.04.597422. doi: 10.1101/2024.06.04.597422.
Cancer remains a leading cause of mortality globally. Recent improvements in survival have been facilitated by the development of less toxic immunotherapies; however, identifying targets for immunotherapies remains a challenge in the field. To address this challenge, we developed IMMUNOTAR, a computational tool that systematically prioritizes and identifies candidate immunotherapeutic targets. IMMUNOTAR integrates user-provided RNA-sequencing or proteomics data with quantitative features extracted from publicly available databases based on predefined optimal immunotherapeutic target criteria and quantitatively prioritizes potential surface protein targets. We demonstrate the utility and flexibility of IMMUNOTAR using three distinct datasets, validating its effectiveness in identifying both known and new potential immunotherapeutic targets within the analyzed cancer phenotypes. Overall, IMMUNOTAR enables the compilation of data from multiple sources into a unified platform, allowing users to simultaneously evaluate surface proteins across diverse criteria. By streamlining target identification, IMMUNOTAR empowers researchers to efficiently allocate resources and accelerate immunotherapy development.
癌症仍然是全球主要的死亡原因。毒性较低的免疫疗法的发展促进了生存率的近期改善;然而,确定免疫疗法的靶点仍然是该领域的一项挑战。为应对这一挑战,我们开发了IMMUNOTAR,这是一种计算工具,可系统地对候选免疫治疗靶点进行优先级排序和识别。IMMUNOTAR将用户提供的RNA测序或蛋白质组学数据与基于预定义的最佳免疫治疗靶点标准从公开可用数据库中提取的定量特征相结合,并对潜在的表面蛋白靶点进行定量优先级排序。我们使用三个不同的数据集证明了IMMUNOTAR的实用性和灵活性,验证了其在分析的癌症表型中识别已知和新的潜在免疫治疗靶点的有效性。总体而言,IMMUNOTAR能够将来自多个来源的数据整合到一个统一的平台中,允许用户同时根据不同标准评估表面蛋白。通过简化靶点识别,IMMUNOTAR使研究人员能够有效地分配资源并加速免疫疗法的开发。