Suppr超能文献

拼接新抗原发现与 SNAF 揭示癌症免疫治疗的共同靶点。

Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy.

机构信息

Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.

Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.

出版信息

Sci Transl Med. 2024 Jan 17;16(730):eade2886. doi: 10.1126/scitranslmed.ade2886.

Abstract

Immunotherapy has emerged as a crucial strategy to combat cancer by "reprogramming" a patient's own immune system. Although immunotherapy is typically reserved for patients with a high mutational burden, neoantigens produced from posttranscriptional regulation may provide an untapped reservoir of common immunogenic targets for new targeted therapies. To comprehensively define tumor-specific and likely immunogenic neoantigens from patient RNA-Seq, we developed Splicing Neo Antigen Finder (SNAF), an easy-to-use and open-source computational workflow to predict splicing-derived immunogenic MHC-bound peptides (T cell antigen) and unannotated transmembrane proteins with altered extracellular epitopes (B cell antigen). This workflow uses a highly accurate deep learning strategy for immunogenicity prediction (DeepImmuno) in conjunction with new algorithms to rank the tumor specificity of neoantigens (BayesTS) and to predict regulators of mis-splicing (RNA-SPRINT). T cell antigens from SNAF were frequently evidenced as HLA-presented peptides from mass spectrometry (MS) and predict response to immunotherapy in melanoma. Splicing neoantigen burden was attributed to coordinated splicing factor dysregulation. Shared splicing neoantigens were found in up to 90% of patients with melanoma, correlated to overall survival in multiple cancer cohorts, induced T cell reactivity, and were characterized by distinct cells of origin and amino acid preferences. In addition to T cell neoantigens, our B cell focused pipeline (SNAF-B) identified a new class of tumor-specific extracellular neoepitopes, which we termed ExNeoEpitopes. ExNeoEpitope full-length mRNA predictions were tumor specific and were validated using long-read isoform sequencing and in vitro transmembrane localization assays. Therefore, our systematic identification of splicing neoantigens revealed potential shared targets for therapy in heterogeneous cancers.

摘要

免疫疗法通过“重编程”患者自身的免疫系统,成为对抗癌症的关键策略。虽然免疫疗法通常保留给具有高突变负担的患者,但来自转录后调控的新抗原可能为新的靶向治疗提供了一个未开发的常见免疫原性靶标库。为了从患者的 RNA-Seq 中全面定义肿瘤特异性和可能的免疫原性新抗原,我们开发了 Splicing Neo Antigen Finder (SNAF),这是一种易于使用的开源计算工作流程,用于预测剪接衍生的免疫 MHC 结合肽(T 细胞抗原)和具有改变的细胞外表位的未注释跨膜蛋白(B 细胞抗原)。该工作流程使用高度准确的免疫原性预测深度学习策略(DeepImmuno),结合新算法对新抗原的肿瘤特异性进行排名(BayesTS),并预测错配剪接的调节剂(RNA-SPRINT)。SNAF 中的 T 细胞抗原经常被证实在质谱 (MS) 中是 HLA 呈递的肽,并预测黑色素瘤对免疫治疗的反应。剪接新抗原负担归因于协调的剪接因子失调。多达 90%的黑色素瘤患者存在共享的剪接新抗原,与多个癌症队列的总生存相关,诱导 T 细胞反应,并具有独特的起源细胞和氨基酸偏好。除了 T 细胞新抗原,我们的 B 细胞重点流水线(SNAF-B)鉴定了一种新的肿瘤特异性细胞外新表位,我们称之为 ExNeoEpitopes。ExNeoEpitope 的全长 mRNA 预测是肿瘤特异性的,并使用长读长异构体测序和体外跨膜定位测定进行了验证。因此,我们对剪接新抗原的系统鉴定揭示了异质癌症中潜在的共同治疗靶点。

相似文献

1
Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy.
Sci Transl Med. 2024 Jan 17;16(730):eade2886. doi: 10.1126/scitranslmed.ade2886.
2
Comprehensive profiling of cancer neoantigens from aberrant RNA splicing.
J Immunother Cancer. 2024 May 15;12(5):e008988. doi: 10.1136/jitc-2024-008988.
3
Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors.
J Clin Invest. 2019 Mar 5;129(5):2056-2070. doi: 10.1172/JCI99538. Print 2019 May 1.
4
Neoantigens in Hematological Malignancies-Ultimate Targets for Immunotherapy?
Front Immunol. 2019 Dec 20;10:3004. doi: 10.3389/fimmu.2019.03004. eCollection 2019.
6
Anti-cancer immune effect of human colorectal cancer neoantigen peptide based on MHC class I molecular affinity screening.
Front Immunol. 2024 Oct 16;15:1473145. doi: 10.3389/fimmu.2024.1473145. eCollection 2024.
7
Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy.
Cytotherapy. 2019 Sep;21(9):973-986. doi: 10.1016/j.jcyt.2019.06.009. Epub 2019 Jul 25.
9
The identification of effective tumor-suppressing neoantigens using a tumor-reactive TIL TCR-pMHC ternary complex.
Exp Mol Med. 2024 Jun;56(6):1461-1471. doi: 10.1038/s12276-024-01259-2. Epub 2024 Jun 12.

引用本文的文献

1
Neoantigen-driven personalized tumor therapy: An update from discovery to clinical application.
Chin Med J (Engl). 2025 Sep 5;138(17):2057-2090. doi: 10.1097/CM9.0000000000003708. Epub 2025 Aug 4.
2
A pan-cancer atlas of therapeutic T cell targets.
bioRxiv. 2025 Jul 7:2025.01.22.634237. doi: 10.1101/2025.01.22.634237.
4
Computational methods and data resources for predicting tumor neoantigens.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf302.
5
Advances and challenges in cancer immunotherapy: mechanisms, clinical applications, and future directions.
Front Pharmacol. 2025 Jun 13;16:1602529. doi: 10.3389/fphar.2025.1602529. eCollection 2025.
6
Advances and challenges in neoantigen prediction for cancer immunotherapy.
Front Immunol. 2025 Jun 12;16:1617654. doi: 10.3389/fimmu.2025.1617654. eCollection 2025.
7
Alternative Splicing in Tumorigenesis and Cancer Therapy.
Biomolecules. 2025 May 29;15(6):789. doi: 10.3390/biom15060789.
8
Immunopeptidomics-guided discovery and characterization of neoantigens for personalized cancer immunotherapy.
Sci Adv. 2025 May 23;11(21):eadv6445. doi: 10.1126/sciadv.adv6445. Epub 2025 May 21.
9
Splicing regulatory dynamics for precision analysis and treatment of heterogeneous leukemias.
Sci Transl Med. 2025 May 7;17(797):eadr1471. doi: 10.1126/scitranslmed.adr1471.

本文引用的文献

1
Splicing Factor SRSF1 Promotes Pancreatitis and KRASG12D-Mediated Pancreatic Cancer.
Cancer Discov. 2023 Jul 7;13(7):1678-1695. doi: 10.1158/2159-8290.CD-22-1013.
2
Antibodies against endogenous retroviruses promote lung cancer immunotherapy.
Nature. 2023 Apr;616(7957):563-573. doi: 10.1038/s41586-023-05771-9. Epub 2023 Apr 12.
3
Pan-cancer analysis identifies tumor-specific antigens derived from transposable elements.
Nat Genet. 2023 Apr;55(4):631-639. doi: 10.1038/s41588-023-01349-3. Epub 2023 Mar 27.
6
Cell division drives DNA methylation loss in late-replicating domains in primary human cells.
Nat Commun. 2022 Nov 8;13(1):6659. doi: 10.1038/s41467-022-34268-8.
8
MSRescore: Data-Driven Rescoring Dramatically Boosts Immunopeptide Identification Rates.
Mol Cell Proteomics. 2022 Aug;21(8):100266. doi: 10.1016/j.mcpro.2022.100266. Epub 2022 Jul 6.
9
Fundamental immune-oncogenicity trade-offs define driver mutation fitness.
Nature. 2022 Jun;606(7912):172-179. doi: 10.1038/s41586-022-04696-z. Epub 2022 May 11.
10
PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial.
Nat Med. 2022 Apr;28(4):724-734. doi: 10.1038/s41591-022-01726-1. Epub 2022 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验