Suppr超能文献

核糖体含量的单细胞异质性及其对生长规律的影响。

Single-cell heterogeneity in ribosome content and the consequences for the growth laws.

作者信息

Brettner Leandra, Geiler-Samerotte Kerry

机构信息

Biodesign Institute Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA.

School of Life Sciences, Arizona State University, Tempe, Arizona, USA.

出版信息

bioRxiv. 2024 Oct 8:2024.04.19.590370. doi: 10.1101/2024.04.19.590370.

Abstract

Across species and environments, the ribosome content of cell populations correlates with population growth rate. The robustness and universality of this correlation have led to its classification as a "growth law." This law has fueled theories about how evolution selects for microbial organisms that maximize their growth rate based on nutrient availability, and it has informed models about how individual cells regulate their growth rates and ribosomal content. However, due to methodological limitations, this growth law has rarely been studied at the level of individual cells. While of fast-growing cells tend to have more ribosomes than of slow-growing cells, it is unclear whether individual cells tightly regulate their ribosome content to match their environment. Here, we employ recent groundbreaking single-cell RNA sequencing techniques to study this growth law at the single-cell level in two different microbes, (a single-celled yeast and eukaryote) and (a bacterium and prokaryote). In both species, we observe significant variation in the ribosomal content of single cells that is not predictive of growth rate. Fast-growing populations include cells exhibiting transcriptional signatures of slow growth and stress, as do cells with the highest ribosome content we survey. Broadening our focus to non-ribosomal transcripts reveals subpopulations of cells in unique transcriptional states suggestive that they have evolved to do things other than maximize their rate of growth. Overall, these results indicate that single-cell ribosome levels are not finely tuned to match population growth rates or nutrient availability and cannot be predicted by a Gaussian process model that assumes measurements are sampled from a normal distribution centered on the population average. This work encourages the expansion of growth law and other models that predict how growth rates are regulated or how they evolve to consider single-cell heterogeneity. To this end, we provide extensive data and analysis of ribosomal and transcriptomic variation across thousands of single cells from multiple conditions, replicates, and species.

摘要

在不同物种和环境中,细胞群体的核糖体含量与群体生长速率相关。这种相关性的稳健性和普遍性使其被归类为一种“生长规律”。该规律推动了有关进化如何选择基于营养可用性最大化其生长速率的微生物有机体的理论发展,并且为有关单个细胞如何调节其生长速率和核糖体含量的模型提供了依据。然而,由于方法上的局限性,这种生长规律很少在单个细胞水平上进行研究。虽然快速生长的细胞往往比缓慢生长的细胞具有更多的核糖体,但尚不清楚单个细胞是否严格调节其核糖体含量以匹配其环境。在这里,我们采用最近具有开创性的单细胞RNA测序技术,在两种不同的微生物——酿酒酵母(一种单细胞酵母和真核生物)和大肠杆菌(一种细菌和原核生物)中,在单细胞水平上研究这种生长规律。在这两个物种中,我们都观察到单个细胞核糖体含量存在显著差异,且这种差异无法预测生长速率。快速生长的群体包括表现出缓慢生长和应激转录特征的细胞,我们所检测的核糖体含量最高的细胞也是如此。将我们的关注点扩展到非核糖体转录本,揭示了处于独特转录状态的细胞亚群,这表明它们已经进化到可以做除了最大化其生长速率之外的其他事情。总体而言,这些结果表明,单细胞核糖体水平并未精确调整以匹配群体生长速率或营养可用性,并且不能通过假设测量值是从以群体平均值为中心的正态分布中采样的高斯过程模型来预测。这项工作鼓励扩展生长规律和其他预测生长速率如何调节或如何进化的模型,以考虑单细胞异质性。为此,我们提供了来自多种条件、重复样本和物种的数千个单细胞的核糖体和转录组变异的广泛数据及分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe53/11488030/9eb01fe611ad/nihpp-2024.04.19.590370v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验