Biodesign Institute Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA.
School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
Yeast. 2024 Apr;41(4):242-255. doi: 10.1002/yea.3927. Epub 2024 Jan 28.
Yeasts are naturally diverse, genetically tractable, and easy to grow such that researchers can investigate any number of genotypes, environments, or interactions thereof. However, studies of yeast transcriptomes have been limited by the processing capabilities of traditional RNA sequencing techniques. Here we optimize a powerful, high-throughput single-cell RNA sequencing (scRNAseq) platform, SPLiT-seq (Split Pool Ligation-based Transcriptome sequencing), for yeasts and apply it to 43,388 cells of multiple species and ploidies. This platform utilizes a combinatorial barcoding strategy to enable massively parallel RNA sequencing of hundreds of yeast genotypes or growth conditions at once. This method can be applied to most species or strains of yeast for a fraction of the cost of traditional scRNAseq approaches. Thus, our technology permits researchers to leverage "the awesome power of yeast" by allowing us to survey the transcriptome of hundreds of strains and environments in a short period of time and with no specialized equipment. The key to this method is that sequential barcodes are probabilistically appended to cDNA copies of RNA while the molecules remain trapped inside of each cell. Thus, the transcriptome of each cell is labeled with a unique combination of barcodes. Since SPLiT-seq uses the cell membrane as a container for this reaction, many cells can be processed together without the need to physically isolate them from one another in separate wells or droplets. Further, the first barcode in the sequence can be chosen intentionally to identify samples from different environments or genetic backgrounds, enabling multiplexing of hundreds of unique perturbations in a single experiment. In addition to greater multiplexing capabilities, our method also facilitates a deeper investigation of biological heterogeneity, given its single-cell nature. For example, in the data presented here, we detect transcriptionally distinct cell states related to cell cycle, ploidy, metabolic strategies, and so forth, all within clonal yeast populations grown in the same environment. Hence, our technology has two obvious and impactful applications for yeast research: the first is the general study of transcriptional phenotypes across many strains and environments, and the second is investigating cell-to-cell heterogeneity across the entire transcriptome.
酵母具有天然的多样性、遗传上的可操作性以及易于生长的特点,使得研究人员可以研究大量的基因型、环境或它们之间的相互作用。然而,酵母转录组的研究受到传统 RNA 测序技术处理能力的限制。在这里,我们优化了一种强大的高通量单细胞 RNA 测序 (scRNAseq) 平台 SPLiT-seq(基于分裂池连接的转录组测序),用于多种物种和倍性的 43,388 个细胞。该平台利用组合条形码策略,能够同时大规模并行地对数百种酵母基因型或生长条件进行 RNA 测序。与传统的 scRNAseq 方法相比,这种方法可以应用于大多数酵母物种或菌株,成本仅为其一小部分。因此,我们的技术允许研究人员利用“酵母的强大力量”,使我们能够在短时间内对数百种菌株和环境的转录组进行调查,而无需特殊设备。该方法的关键在于,顺序条形码是在 RNA 的 cDNA 拷贝上以概率附加的,而分子仍然被困在每个细胞内。因此,每个细胞的转录组都用独特的条形码组合标记。由于 SPLiT-seq 将细胞膜用作该反应的容器,因此可以一起处理许多细胞,而无需将它们彼此物理隔离在单独的孔或液滴中。此外,序列中的第一个条形码可以被有意选择来识别来自不同环境或遗传背景的样本,从而在单个实验中实现数百种独特扰动的多路复用。除了更高的多路复用能力外,由于其单细胞性质,我们的方法还促进了对生物异质性的更深入研究。例如,在本文提供的数据中,我们检测到与细胞周期、倍性、代谢策略等相关的转录上不同的细胞状态,这些都存在于相同环境中生长的克隆酵母群体中。因此,我们的技术在酵母研究中有两个明显且有影响力的应用:一是在许多菌株和环境中研究转录表型,二是研究整个转录组中的细胞间异质性。