Suppr超能文献

迁移学习可预测新兴病原体中的物种特异性药物相互作用。

Transfer learning predicts species-specific drug interactions in emerging pathogens.

作者信息

Chung Carolina H, Chang David C, Rhoads Nicole M, Shay Madeline R, Srinivasan Karthik, Okezue Mercy A, Brunaugh Ashlee D, Chandrasekaran Sriram

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

bioRxiv. 2024 Jun 6:2024.06.04.597386. doi: 10.1101/2024.06.04.597386.

Abstract

Machine learning (ML) algorithms are necessary to efficiently identify potent drug combinations within a large candidate space to combat drug resistance. However, existing ML approaches cannot be applied to emerging and under-studied pathogens with limited training data. To address this, we developed a transfer learning and crowdsourcing framework (TACTIC) to train ML models on data from multiple bacteria. TACTIC was built using 2,965 drug interactions from 12 bacterial strains and outperformed traditional ML models in predicting drug interaction outcomes for species that lack training data. Top TACTIC model features revealed genetic and metabolic factors that influence cross-species and species-specific drug interaction outcomes. Upon analyzing ~600,000 predicted drug interactions across 9 metabolic environments and 18 bacterial strains, we identified a small set of drug interactions that are selectively synergistic against Gram-negative (e.g., ) and non-tuberculous mycobacteria (NTM) pathogens. We experimentally validated synergistic drug combinations containing clarithromycin, ampicillin, and mecillinam against , an emerging pathogen with growing levels of antibiotic resistance. Lastly, we leveraged TACTIC to propose selectively synergistic drug combinations to treat bacterial eye infections (endophthalmitis).

摘要

机器学习(ML)算法对于在大型候选空间中高效识别有效的药物组合以对抗耐药性是必不可少的。然而,现有的ML方法无法应用于训练数据有限的新出现和研究不足的病原体。为了解决这个问题,我们开发了一种迁移学习和众包框架(TACTIC),用于基于来自多种细菌的数据训练ML模型。TACTIC利用来自12种细菌菌株的2965种药物相互作用构建而成,在预测缺乏训练数据的物种的药物相互作用结果方面优于传统的ML模型。TACTIC顶级模型特征揭示了影响跨物种和物种特异性药物相互作用结果的遗传和代谢因素。在分析了9种代谢环境和18种细菌菌株中的约600,000种预测药物相互作用后,我们确定了一小部分对革兰氏阴性菌(如)和非结核分枝杆菌(NTM)病原体具有选择性协同作用的药物相互作用。我们通过实验验证了含有克拉霉素、氨苄青霉素和美西林的协同药物组合对一种抗生素耐药性不断增加的新出现病原体的作用。最后,我们利用TACTIC提出了用于治疗细菌性眼部感染(眼内炎)的选择性协同药物组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a4/11185605/9aec9cd67de0/nihpp-2024.06.04.597386v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验